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ABSTRACT 
 

Autonomous object recognition is an active area of interest for military and 
commercial applications: Given an input image from an infrared or range sensor, find 
interesting objects in those images and then classify those objects. In this work, automatic 
target recognition of ship types in an infrared image is explored. The first phase segments 
the original infrared image in order to obtain the ship silhouette. The second phase 
calculates moment functions of those silhouettes that guarantee invariance with respect to 
translation, rotation and scale. The third phase applies those invariant features to a 
backpropagation neural network and classifies the ship as one of the five types. The 
algorithm was implemented and experimentally validated using both simulated three-
dimensional ship model images and real images derived from video of an AN/AAS-44V 
Forward Looking Infrared (FLIR) sensor. 
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DISCLAIMER 
 

The algorithms and computer programs developed in this research were not 
exercised for all possible cases of interest.  While every effort has been made, within the 
time available, to ensure that the programs are free of computational and logic errors, 
they cannot be considered validated. Any application of these programs without 
additional verification is at the risk of the user. 
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I. INTRODUCTION 

A. AUTOMATIC TARGET RECOGNITION 

Automatic target recognition (ATR) is a technological discipline that deals with 
the understanding, design, development, and production of techniques and hardware for 
the classification of objects of interest as they are sensed by remote means, either actively 
or passively. During the past several decades, numerous attempts have been made to 
create such systems [Ref. 1-6]. However, progress in ATR has been slow [Ref. 7] 
because some new problems have appeared. For example, the vision problem pushes the 
fields of artificial intelligence, neural networks, microelectronics, sensors, and computer 
science to their limits.  

In any pattern recognition application, it is important to select features that 
adequately and uniquely describe the objects to be recognized. Moreover, the features 
associated with an object should be invariant with respect to the position, rotation, and 
scale of that object in the field of view. Thus the ideal recognition system is robust to 
orientation variations, scale variations and boundary perturbations [Ref. 8]. 

Our proposed approach is to use the moment invariants [Ref. 9] for the set of 
features to quantify the object. The thesis reports the mathematical foundation of two-
dimensional moment invariants and shows that recognition schemes based on them could 
be truly position, size and orientation-independent. Since the moments are global 
features, application of such a feature space is limited to images with minimal 
background and scenes containing only one object. Ships on the open sea are appropriate 
for such feature spaces [Ref. 10]. The moment invariants are used to construct a feature 
vector of low dimension, and recognition is performed using this feature vector applied to 
a trained artificial neural network classifier. 

    

B. APPLICATIONS OF AUTOMATIC OBJECT RECOGNITION   

Automatic object recognition has diverse applications in numerous fields of 
science and technology and is permeating many aspects of military and civilian 
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industries. It is popular within the field of robotic vision because of the limited domains 
and the controllability of the environment in which they are used [Ref. 7]. 

In military applications and specifically naval applications, electro-optic and 
infrared sensors have been connected to weapon systems. In several cases an ATR 
algorithm is responsible for discriminating a target from a non-target object, enabling the 
possible target destruction. Other systems address classification tasks where targets types 
are determined. Another example is a Forward Looking Infrared (FLIR) sensor combined 
with image-processing hardware for discriminating tanks from trucks, bushes, and other 
environmental objects. 

 

C. PROJECT GOALS 

In this thesis, a fast and robust system is presented that classifies ships seen from 
an arbitrary viewpoint and range in three-dimensional space. The approach is concerned 
with segmented rigid bodies viewed without occlusion from other objects. However, self-
occlusion due to change of viewpoint is allowed. 

Although object separation from background is a challenging task in general, our 
application can be carried out with relative ease. This is the case because a ship has 
usually a clear contrast with the background in Forward Looking Infrared (FLIR) 
imagery. This greatly simplifies ship classification. 

Our approach is model-based, meaning that the kinds of objects to be recognized 
are known in advance and can be summarized in a set of models. The specific model 
database we have implemented contains five classes of ships: destroyer, frigate, aircraft 
carrier, research ship and merchant ship. This database was used in the training phase. 
For each ship model and viewpoint, a silhouette was extracted and a moment-invariant 
signature calculated consisting of a twelve-element feature vector. 

Then for a ship image of unknown type, we compute its signature. Classification 
is done using an artificial neural network. The neural-net classifier’s generalization 
capabilities are used to group the moment-invariant signatures, corresponding to different 
views of an object, into a single ship type class.  
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The proposed scheme is summarized in Figure 1 below. 

Figure 1: Processing scheme of moment invariant recognition. 

This thesis has been organized as follows: in Chapter II we present techniques for 
feature extraction followed by mathematical foundations of moment invariants. In 
Chapter III we present an artificial neural network as a classifier and the backpropagation 
learning rule. Chapter IV details the input image database and the training and testing of 
our system. Chapter V summarizes the results from the experimentation using simulated 
images from three-dimensional ship models and real ship images from FLIR sensors. 
Chapter VI contains concluding remarks. 
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II. FEATURE SELECTION AND MOMENT INVARIANTS 

A. OVERVIEW 

An old adage says “Good Features make Good Recognizers” [Ref. 11]. This is 
true whether your recognizer is using an artificial network or a statistical based decision 
mechanism. So our project paid careful attention to feature extraction from ship images. 

Many approaches have been advocated for features in automatic target 
recognition. Present methods can be categorized as either global or local. Global methods 
use global features of an object boundary or of an equivalent representation. Such 
techniques are the Fourier descriptors (FD) [Refs. 1, 5], moments [Ref. 12] and  
autoregressive models [Ref. 13]. Local methods use features such as critical points [Ref. 
14] or high-resolution pursuit (HRP) [Refs. 8, 15]. 

For global-based approaches, there is a wide variety of published literature similar 
to the approach described herein. Global methods have the disadvantage that a small 
distortion in a section of a boundary of an object will result in changes to all global 
features. 

One early work is Dudani et al [Ref. 16], which used moment invariants for 
feature extraction and a probabilistic approach for the classification of airplanes. Dudani 
used six different aircraft types and the images were based on physical models. His 
training set was based on over 3000 images taken in a 140o by 90o sector. The testing set 
contained 132 images (22 images of each of the six classes) obtained at random viewing 
aspects. The classification accuracy achieved in this six-class problem was 95%. 

Later, Wallace and Wintz [Ref. 17] propose a technique similar to Dudani’s with 
Fourier Descriptor (FD) of the silhouette boundary as features. The Fourier descriptor is 
one method of describing the shape of a closed figure. Wallace and Wintz used a graphics 
program to test their algorithm implementing three-dimensional models for six different 
aircrafts. The graphics program approximated each airplane by using 50-100 planes. 
Again, the evaluation was done using a randomly selected set and comparing to the 
library of projections. However, they used only 143 projections for training (9.9 times 
less than that used by Dudani et al) and the aircraft outlines were taken from a sector of 

5 



 

180o by 180o. Wallace and Wintz considered a bigger sector trying to avoid Dudani’s 
approach, because if we delete the angles near the front view and rear view of the aircraft 
the problem is much easier: shapes vary much more with slight rotations when viewed 
almost edgewise [Ref. 17]. The maximum classification accuracy achieved by Wallace 
and Wintz was 88.0%.  

Reeves et al [Ref. 18] presents a geometrical-moment approach using moments of 
the image that are normalized with respect to scale, translation and rotation. They call 
them “standard moments”. The experiments described there were based on the same 
software used by Wallace and Wintz. They also used the same six types of airplanes, the 
same training set and the same testing set. However, they have chosen the moment 
feature representation because Fourier descriptors (FD) are particularly sensitive to 
perturbations in the object boundary. For example, the FD’s for the image of a disk differ 
greatly from those for a disk with a tiny wedge missing. Reeves et al used two 
classification criteria: the minimum Euclidean distance and the minimum Euclidean 
distance after “variance balancing”. The best classification result was 93%.  

More recent work of Khotanzad [Ref. 19] used global features derived from 
complex orthogonal Pseudo-Zernike Moments (PZM). Khotanzad tested the performance 
of PZM by recognizing 26 uppercase English characters (A to Z), typed and handwritten. 
The database contained 624 images corresponding to 24 images per character. These 
images were generated with arbitrarily varying scales, orientations, and translations. The 
available samples were divided into halves. The first half was used for training and the 
second for testing. There were 12 training images and 12 testing images per character. 
His neural network classifier formed by 45 input nodes, 26 output nodes and 40 hidden 
nodes got 100% of classification accuracy.  

Systems using local features perform well in the presence of noise, distortion or 
partial occlusion. The effects on an isolated region of the contour alter only the local 
features associated with that region, leaving all the other local features unaffected. 
However, the choice of representative local features is not trivial and the recognition 
process based on local features is more computationally intensive and time consuming 
[Ref. 2].  

6 



 

B. MOMENT INVARIANTS 

Moment invariants are a reliable and versatile way to construct a feature vector of 
low dimension as the basis for the neural-network classifier. Moments have been used as 
pattern features in a number of applications [Ref. 9, 20] to recognize two-dimensional 
image patterns.  

The regular moments mpq of a digital image pattern represented by f(x,y) are 
defined as: 

Hu [Ref. 9] first introduced moments as image-recognition features. Using 
nonlinear combinations of normalized central moments, he derived seven invariant 
moments, which have the desirable property of being invariant under image translation, 
scaling and rotation. The classic central moments that have the property of translation 
invariance are: 

 

Hu discovered these moments M1, M2, …, M7, are invariant under translation 
and rotation: 

M1 =  μ20 + μ02                       (3) 

M2 = (μ20 – μ02)2 + 4μ2
11                     (4)  

M3 = (μ30 – 3μ12)2 + (3μ21 – μ03)2                    (5) 

M4 = (μ30 + μ12)2 + (3μ21 + μ03)2                    (6) 

M5 = (μ30 – 3μ12)(μ30  + μ12)[ (μ30 + μ12)2 – 3(μ21 + μ03)2 ]           

       + (3μ21 – μ03)( μ21  + μ03)[ 3(μ30  + μ12)2 – (μ21  + μ03)2 ]          (7) 
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M6 = (μ20 – μ02)[ (μ30 + μ12)2 – (μ21 + μ03)2 ] + 4μ11(μ30 + μ12)( μ21 + μ03)           (8) 

M7 = (3μ21 – μ03)(μ30 + μ12)[ (μ30 + μ12)2 – 3( μ21 + μ03)2 ]  

      – (μ30 – 3μ12) (μ21 - μ03)[ 3(μ30 + μ12)2 – (μ21 + μ03)2 ]          (9) 

The functions M1 through M6 are invariant under rotation, reflection, or a 
combination of rotation and reflection. This property helps to simplify the range of all 
distinct views of the ships as explained in section D of chapter IV.   

The above moments can be normalized to become invariant under a scale change 
by using the radius of gyration r of a planar pattern [Ref. 16]: 

r = (μ20 + μ02)1/2                    (10) 

The radius of gyration for a particular object from a particular angle of view is 
directly proportional to the size of the image or inversely proportional to the distance B 
of the object along the optical axis: 

(μ20 + μ02)1/2 B = constant                   (11) 

Therefore, the radius of gyration r can normalize the moment functions M2 
through M7 to obtain size invariance, what Hu called the “normalized central moments”: 

M1’ = (μ20 + μ02)1/2 B = r B                    (12) 

M2’ = M2 / r4                     (13) 

M3’ = M3 / r6                     (14) 

M4’ = M4 / r6                     (15) 

M5’ = M5 / r12                     (16) 

M6’ = M6 / r8                     (17) 

M7’ = M7 / r12                     (18) 
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C. FEATURE VECTOR 

The above moments of an object can be computed for both the image boundary 
and the solid silhouette. Minute details such as the shape of the stacks of a ship are better 
characterized by the moments from the boundary. Gross structural features of the ship are 
better characterized by moments derived of silhouette; also, these moments are less 
susceptible to noise [Ref. 16]. 

In our system, two sets of six moment invariant functions (M2’, M3’, M4’, M5’, 
M6’ and M7’), six from the boundary and six from the silhouette, were computed. As the 
distance B of the object along the optical axis was not known, the M1’ component was 
not used. The twelve-component feature vector was sent to the neural network classifier 
for the recognition phase.   
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III. THE ARTIFICIAL NEURAL NETWORK (ANN) CLASSIFIER 

A. MOTIVATION 

Over the past few years, an explosion of interest in ANN models and their 
applications has occurred [Ref. 21, 22, 23]. ANNs posses a number of properties which 
make them particularly suited to complex classification problems [Ref. 22, 25, 26]. 
Unlike traditional classifiers, ANN models can examine numerous competing hypotheses 
simultaneously using massive interconnections among many simple processing elements. 
In addition, ANNs perform extremely well under noise and distortion. 

The implementation of a model-based target recognition scheme using ANNs 
seems to be attractive. First of all, ANNs provide their own way to represent the 
knowledge that they store [Ref. 27]. In addition, the complexity and the computational 
burden increase slowly as the number of data models increases. 

Although ANN’s performance is excellent, many researchers still criticize ANNs 
because they can require much training time before they can perform a specific task. 
However, in our automatic target recognition classifier, the recognition phase is of far 
more importance and it must run as quickly and accurately as possible; the training phase 
can be performed off-line. 

In this thesis specifically, a three-layer perceptron neural network [Ref. 28] 
trained with the backpropagation learning rule [Ref. 29] was implemented. In this 
scheme, expensive storage of a multiview database is not needed since during training the 
neural net extracts all the relevant information from the library. Also, due to the 
generalization capability of the neural net, good results can be obtained even with a small 
number of views in the library. 
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B. MULTILAYER ANN AND THE BACKPROPAGATION RULE 

Artificial neural networks were developed by modeling a biological neuron. A 
generic neuron is formed by “cell body”, “dendrites” and “axon”. The electrical signals 
arrive in a neuron by the dendrites and are passed to the cell body where they are added. 
If a threshold is achieved, the neuron is activated and the information is passed to the 
axon. The axon is the transmission line of the neuron. The axon will pass the information 
to the chemical synapses connections. The learning process will be responsible for 
increasing the synaptic strength, which measures the degree of coupling between two 
neurons. 

Many neuron models appear in the literature. The beginning of the development 
of neural network models is related to the paper of Warren McCulloch and Walter Pitts 
published in 1943. They studied the implementation of logical functions using artificial 
neurons. The mathematical model of the neuron proposed by McCulloch-Pitts, shown in 
Figure 2 below, assumes the function realized by the cell body as being a “step function” 
applied to the summation of the weighted inputs. The weights control the importance of 
each input. 

Neuron 

  

f w xh i i
x

n

=
∑⎡
⎣
⎢

⎤

⎦
⎥

0  

w1 

wnxn 

w0x0 

x1 
. 
. 

 

Figure 2: McCulloch-Pitts Model. 

 

The McCulloch-Pitts model applied to a single layer of neurons (perceptrons) 
cannot solve problems where the inputs cannot be linearly separated. The PDP group in 
their collection of papers [Ref. 28] proposed modifications to the previous model. The 
step function was replaced by a function that is monotonic, differentiable and smooth 
(often implemented by a sigmoid). The learning algorithm used is “backpropagation”. 

12 



 

Artificial neural networks (ANN) are specified by the topology of the network, 
the characteristics of the nodes (neurons) and the learning algorithm. The topology of a 
multilayer ANN is a structured hierarchical layered network as shown in Figure 3 below: 
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                  Figure 3: Multilayer neural-network graph. 

It consists of several layers of nodes, and usually an input layer and an output 
layer. Between the input layer and the output layer, we have one or more “hidden” layers 
of nodes. Hidden nodes often represent domain knowledge useful for solving recognition 
tasks [Ref. 27]. Generally, each node in one layer is interconnected with all the nodes in 
adjacent layers with connections (synapses). Each connection is associated with a weight, 
which measures the degree of interaction between the corresponding nodes. 

A general L-layered feed-forward artificial neural network consists of N0 input 
nodes and NL output nodes. The number of nodes in the hidden layers is Nk for 1<k<L-1. 
In this notation, the input layer is not counted as a layer. So an L-layer feed-forward 
artificial neural network has L-1 hidden layers and the Lth layer is the output layer. In 
this thesis, we implemented a 2-layered (L=2) feed-forward artificial neural network with 
N0=12 (the moment invariant feature vector) and N2=5 (five ship types). The number of 

13 



 

hidden nodes was found in order to maximize the neural net performance, as detailed in 
Chapter V. 

The algorithms for multilayer ANN processing can be divided into two phases: 
retrieving and learning. In the retrieving phase of the algorithm, information flows from 
the input layer through the hidden layers to the output layer. The nodes update their own 
activation values based on the system dynamics. In the learning phase, modification of 
the weights corresponding to the connection edges takes place. In this thesis, the popular 
backpropagation rule [Ref. 28] learning algorithm is used. This algorithm performs 
supervised learning; in each step it adjusts the connection weights, minimizing the mean-
square error between the target value (the desired) and the output value (the actual) if the 
network. 

During the retrieving phase, we present continuous valued input data x1, x2, …, 
xn0 called exemplar patterns and the corresponding desired output data t1, t2, …, tnL called 
target patterns. Input data are propagated forward through the network, which computes 
the activation value for each node, until the output layer is reached. 

The learning phase involves a backward pass through the network during which 
the error signals produced at the output layer are passed to each node in the network and 
appropriate weight changes are made. For each weight, the gradient of the output error 
with respect to that weight is computed. The weight is changed in the direction that 
reduces the error.  
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IV. EXPERIMENT DESCRIPTION 

A. PROGRAMMING ENVIRONMENT 

Our Automatic Recognition Algorithm was based on programs written in 
MATLAB 5.3.0 from MathWorks. MATLAB is a complete computing environment for 
the interactive analysis and visualization of data, integrating an array-oriented language 
with mathematical analysis and graphical display techniques. The neural-network 
programs used in this thesis were implemented using functions from the MATLAB 
Neural Network Toolbox. The three-dimensional model and all image analysis were 
performed using the MATLAB Image Processing Toolbox.  

Although MATLAB is an interpretative language, it is possible to translate all 
MATLAB source codes into C code and create executable files using the MATLAB C 
Compiler. Consequently, our Target Recognition System could be used in a real-time 
application. 

B. THE THREE-DIMENSIONAL SHIP MODEL DATABASE  

1. The Three-Dimensional Ship Modeling  

This section will describe our implementation of three-dimensional ship models. 
The three-dimensional wire-frame models represent a graphics object by connected 
polygons or faces. The model is defined by specifying the coordinates of the vertices of 
each polygon and then specifying the faces by connecting the specified vertices in a 
specific order. This three-dimensional modeling was based on a MATLAB function 
called “patch” (see “findInputSet.m” in the Appendix A). 

Five ship types were chosen to be included in the recognition class and therefore 
be modeled: namely, an aircraft carrier, a frigate, a destroyer, a research ship (Point Sur), 
and a merchant ship. With these five types, it was possible to address a typical scenario at 
sea, where we can find military ships, small civilian ships and big merchant ships.  

The three-dimensional wireframe model for the aircraft carrier was based on a 
1:1800 scaled drawing of the Carl Vinson aircraft carrier (Nimitz Class) [Ref. 30]. This 
drawing is shown in Figure 4 and a picture of the Carl Vinson aircraft carrier is shown in 
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Figure 5. The model was implemented manually since no CAD model was available. It 
was formed of 45 vertices and 34 planes (see the “aircraft.m” program in Appendix A). 
Figure 6 shows the model from four view angles. 

Figure 4: Scaled drawing of the Carl Vinson aircraft carrier [From Ref.30]. 

     Figure 5: Picture of the Carl Vinson aircraft carrier [From Ref. 30]. 
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Figure 6: The aircraft carrier three-dimensional model in four view angles. 

The three-dimensional wireframe model for the destroyer was based on a 1:1500 
scaled drawing of the Oscar Austin destroyer (Arleigh Burke Class) [Ref. 30]. This 
drawing is shown in Figure 7 and a picture of the Oscar Austin destroyer is shown in 
Figure 8. The destroyer model was formed of 92 vertices and 57 planes (see the 
“destroyer.m” program in Appendix A). Figure 9 shows the model from four view angles. 

Figure 7: Scaled drawing of the Oscar Austin destroyer [From Ref.30]. 

       Figure 8: Picture of the Oscar Austin destroyer [From Ref.30]. 
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       Figure 9: The destroyer three-dimensional model in four view angles.  

The three-dimensional wireframe model for the frigate was based on a 1:1200 
scaled drawing of the Rentz frigate (Oliver Hazard Perry Class) [Ref. 30]. This drawing 
is shown in Figure 10 and a picture of the Oscar Austin destroyer is shown in Figure 11. 
The frigate model was formed of 130 vertices and 66 planes (see the “frigate.m” program 
in Appendix A). Figure 12 shows the model from four different view angles. 

          Figure 10: Scaled drawing of the Rentz frigate [From Ref.30]. 

                    Figure 11: Picture of the Rentz frigate [From Ref.30]. 
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Figure 12: The frigate three-dimensional model in four view angles. 

The three-dimensional wireframe model for the Merchant Ship was based on a 
scaled drawing of the Sea Isle City U.S. Tanker [Ref. 31]. This drawing is shown in 
Figure 13 and a picture of the Sea Isle City U.S. tanker is shown in Figure 14. The 
merchant model was formed of 100 vertices and 58 planes (see the “merchant.m” 
program in Appendix A). Figure 15 shows the model viewed from four view angles. 

      Figure 13: Scaled drawing of the Sea Isle City tanker [From Ref.31]. 
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           Figure 14: Picture of the Sea Isle City tanker [From Ref.31]. 

Figure 15: The merchant three-dimensional model in four different view angles. 



 

The three-dimensional wireframe model for the research ship was based on 
general specifications and dimensions extracted from R/V Point Sur Cruise Planning 
Manual (see Figure 16). The research ship model was formed of 76 vertices and 32 
planes (see the “poitsur.m” program in Appendix A). Figure 17 shows the model viewed 
from four view angles. 

                          Figure 16: Picture of the R/V Point Sur. 

Figure 17: The Point Sur three-dimensional model in four view angles. 
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2. Viewpoint Control  

 To extract silhouettes, the orientation of the three-dimensional ship model must 
be specified. It was possible to specify the viewpoint with the MATLAB “view” 
command by defining azimuth and elevation with respect to the axis origin. Azimuth is a 
polar angle in the x-y plane, with positive angles indicating counter-clockwise rotation of 
the viewpoint. Elevation is the angle above (positive angle) or below (negative angle) the 
x-y plane. The counter-clockwise concept for the azimuth was adopted because the 
viewing azimuth is the negative of the ship’s heading. Therefore, a ship with heading of 
300 clockwise is equivalent to viewing that ship with azimuth of 300 counter-clockwise. 
The diagram in Figure 18 illustrates the coordinate system. The arrows indicate positive 
directions. The origin was assumed to be located approximately in the center of gravity of 
the ship model. Only the portion above sea level was considered. Using this coordinate 
system, we can verify that the broadside view of any ship model corresponds to 00 in 
azimuth and 00 in elevation, in this situation the bow direction will be to the right 
(positive x).  

Figure 18: Diagram illustrating the coordinate system and the ship model origin. 

One view of each of the five modeled ships is illustrated in Figure 19. In this 
figure, the azimuth angle is –37.5 degrees and the elevation angle is 30 degrees. 
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Figure 19: Views of the three-dimensional ship models (az.=-37.5o, elev.=30o). 

3. Orthographic Projection  

Once the three-dimensional model is created and the aspect angle is set using the 
“view” command, a silhouette can be created by projecting the three-dimensional ship 
model. The orthographic method projects the viewing volume as a rectangular 
parallelepiped onto a plane, i.e., relative distance from the camera does not affect the size 
of objects. Using orthographic projection it is possible to get a good approximation of the 
real process of image generation when the distance from the object to the camera is much 
greater than the relative deep of the object structural points. This applies to our task 
because ships are generally far away from the FLIR sensors. Figure 20 shows some 
silhouettes created using the orthographic projection applied to the images shown in 
Figure 19. 

           Figure 20: Silhouettes created using the images of Figure 19. 

 

 

C. THE REAL FLIR IMAGES DATABASE 

1. Domain Issues 

We also obtained real images taken at sea using the AN/AAS-44V Forward-
Looking Infrared (FLIR) sensor, mounted on a springboard at the nose of the SH-60B 

btained real images taken at sea using the AN/AAS-44V Forward-
Looking Infrared (FLIR) sensor, mounted on a springboard at the nose of the SH-60B 
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Rapid Deployment Kit equipped helicopter. The FLIR images were available through a 
VHS-format videotape showing several ships. However, only images of our modeled 
ships were considered for our analysis. The FLIR images show good contrast and were 
displayed in black-hot (higher temperatures areas are black) format. Image frames were 
acquired using a commercial video-grabber board installed in a PC-type desktop 
computer. 

The real FLIR images that we extracted from the videotapes were used to test our 
recognition system, previously trained with the three-dimensional ship model data. This 
was considered particularly important since presenting the classifier with new images 
with blurriness and an unknown target viewpoint is challenging. 

Only 25 real FLIR images were used for testing due to the small number of 
modeled ships in the FLIR tape. These were: two destroyer images (Figure 21), four 
aircraft carrier images (Figure 22), 15 merchant ship images (Figure 23), four research 
ship images (Figure 24), and no frigate images. 

                       Figure 21: Real FLIR images of destroyers  
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             Figure 22: Real FLIR images of aircraft carrier class. 
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                Figure 23: Real FLIR images of merchant ship class. 
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                     Figure 24: Real FLIR images of research ship class. 

The quality of the images was not ideal because the FLIR system projects 
alphanumeric data and targeting aids onto the screen. Figure 25 shows one of the FLIR 
images. Specifically, the crosshairs partially obscure the ship image and interfere with the 
classification process. A segmentation was necessary to eliminate the background 
including the alphanumeric data. 
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                 Figure 25: FLIR image of the Arleigh Burke Destroyer. 

2. Segmentation 

Prior to computing the moment invariants of the ship of the Figure 25, we must 
suppress the background and extract the ship silhouette. In this segmentation, we 
employed histogram and thresholding techniques.  

We assume that the extracted 320x240 pixels image contains one ship only. This 
image includes the ship, water, alphanumeric data, and may include the sky. As the first 
step, we generated the gray-level histogram of the image and selected a threshold level 
that best extracted the ship from the water region. Figure 26 shows the histogram of 
Figure 25. 
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                       Figure 26: Gray-level histogram of Figure 21. 

In this image, the average brightness for the water region is greater than that for 
the ship region. If we had a sky region in this picture, the values in the sky region would 
be lower than in the ship region. The histogram profile was analyzed and it was verified 
that the highest peak was related to the water portion of the image. It was also verified 
that the first peak left of the highest was related to the ship. The region between the “ship 
peak” and the “water peak” was a transition region; the threshold value selected 
corresponded to the minimum in the transition region. In Figure 26, those values are 
water peak= 95, ship peak= 65 and threshold= 72. The original image was thresholded at 
that value and a binary image generated. Figure 27 shows the result for Figure 25. 

 

29 



 

       Figure 27: Binary image thresholded at level 72 using Figure 25. 

In a second step, we eliminated spurious pixels by extracting the greatest 
connected region and filling the holes (see segmentation.m in Appendix A). The final 
ship silhouette found for Figure 25 is shown if Figure 28. 

              Figure 28: Silhouette found after cleaning up Figure 27. 

 

D. TRAINING PHASE OF THE NEURAL NETWORK CLASSIFIER 

The neural network ship classifier required a training phase using representative 
projective views. As explained in Section B of Chapter II, the moment functions 
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invariance under reflection helps to simplify the range of all representative views distinct 
ship views. Three-dimensional objects which possess symmetry about a plane, such as a 
ship, can have its significant range of distinct views for azimuth restricted to [-90o, 90o], 
where 0o corresponds to the broadside ship silhouette [Ref. 16]. Elevation angles were 
restricted to the upper hemisphere with 45 degrees as the upper operational limit, as the 
helicopter will be viewing the ship with lower elevation angles.  

One training set and two testing sets of projections were generated. The training 
set was 48 views of each of the five ship types taken at viewpoints separated by 15o in a 
180ox45o sector; i.e., { (θ, α), θ = -90o, -75o, -60o, …, 75o; α = 0o, 15o, 30o, 45o } where θ 
and α represent azimuth and elevation angles respectively. Examples of the training 
images are in Figure 29 below. In this figure, the elevation angle is 15o and the azimuth 
angles from left to right are: -90o, -60o, -30o, 0o, 30o, and 60o. The ship types from top to 
bottom are aircraft carrier, destroyer, frigate, merchant, and research ship. 

Figure 29: Examples of the training images for each modeled ship 
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E. TESTING PHASE 

There were two testing sets; 41400 silhouettes projected from the three-
dimensional ship models and the 25 real FLIR images. The first test set contains 8280 
views of each of the five ship models taken at viewpoints separated by 1o in azimuth and 
1o in elevation; i.e., {(θ,α), θ = -90o, -89o, -88o, …, 89o ; α = 0o, 1o, 2o, …, 45o } where θ 
and α represent azimuth and elevation angles respectively. Although this set contains the 
training set, the number of training views was very  small (96 views) to compromise the 
simulation results.  The real image test set was described earlier. 

 

 

 

F. PROGRAMS DEVELOPED 

All 16 programs were written in MATLAB. They can be divided in four 
categories (see Table 1 and Appendix): 

- Three-dimensional ship modeling: specialized functions used to create 
the three-dimensional models used in other programs; 

- Moment invariant computation: programs used to calculate the 
moment invariants of a specific ship silhouette; 

- Neural network training: programs used to train the neural network 
implemented; and 

- Testing: programs used to evaluate the performance of the system 
implemented. 
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Name Type Function 

aircarrier.m Create the model for aircraft carrier 

destroyer.m Create the model for destroyer 

frigate.m Create the model for frigate 

pointsur.m Create the model for research ship 

merchant.m 

Three-
dimensional 
ship 
modeling 
programs 
 

Create the model for merchant ship 

findInputMomSet.m Returns the 12-element input set  

find_mom_functions.m Returns the six moment functions values  

find_moment.m Returns the central moment  

find_centroid.m 

Moment 
invariants 
computation 
programs 

Returns the centroid of a silhouette  

mainShipRecon.m Creates and trains a neural network 
responsible for recognizing ship types   

findInputSet.m 

Neural 
network 
training 
programs Returns all the silhouettes to be used by 

the neural network during training phase 
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interface.m   Create a Graphical User Interface to 
evaluate the system implemented. Three 
ship silhouettes are shown in the 
interface: (1)the original silhouette, (2)the 
rotated, scaled and noisy silhouette 
defined by the user, and (3)the neural 
network guessed silhouette 

plotSilhouette.m Draws the ship silhouette inside the 
Graphical User Interface 

segmentation.m Segments a FLIR real image using a 
histogram and threshold technique 

createTestSet.m Creates 05 mat files containing the 
silhouettes of each ship for increments of 
one degree in azimuth and elevation,        
then plots the errors 

findResultSet.m 

Testing 
programs 

Returns a vector with the size of all the 
viewangles being tested, where "1" will 
mean misclassified and "0" will mean 
correct classified 

                               Table 1: Programs implemented 
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V. RESULTS FROM EXPERIMENTATION 

A. EVALUATION STRUCTURE 

Experiments were carried out in order to evaluate the proposed system. For this 
purpose, the five ship models detailed in chapter IV were used. The parameters generally 
used to characterize the overall performance of an automatic target recognition system 
are the probability a given ship is correctly recognized (recall) and probability a given 
type identification is correct (precision). By classification is meant recognition, the 
determination of the target type. Performance data is generally given in the form of a 
confusion matrix together with the size of the feature vector and database. 

Using the probability of correct classification as a reference and the simulated 
three-dimensional ship model images as a database, it was possible to iteratively optimize 
our system. This optimization was achieved in three distinct experiments. 

B. FIRST EXPERIMENT 

The first experiment was implemented as described in chapter IV. Experiments 
were performed with simulated 12-components moment invariants signatures from the 
models. The six moment invariants of the solid silhouette and the six moment invariants 
of the boundary make up the signature vector, as described in chapter II. The training 
signatures were generated from images of the three-dimensional models taken at a regular 
pace of 15 degrees in azimuth increments and in four different viewing elevation angles: 
0o, 15o, 30o and 45o. The total training set was 48 images. 

The testing set contained the images of the three-dimensional models taken at a 
regular pace of 1o in azimuth increments and using the same four elevation angles used 
during training. The neural network used was small, with only 20 hidden neurons and a 
single hidden layer. Backpropagation was used as the training technique. The network 
was successfully trained. This network yielded 90.1% discrimination leaving an overall 
approximate 10% error rate. Details of the experiment are summarized in Table 2. 
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Network Parameters Network-1 

# input nodes 12 

# nodes in hidden layer 20 

# output nodes 5 

# training set 240 (12 x 4 x 5) 

# test set 3600 (180 x 4 x 5) 

Accuracy 90.1% 

                            Table 2: Neural network for experiment 1 

The first experiment enabled us to analyze the azimuth behavior of the neural net 
generalization capability. For this purpose, we plotted for each ship type the classification 
error percentage with respect to azimuth (Figures 30 to 32). 

          Figure 30: Accuracy with respect to azimuth for aircraft carrier  
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Figure 31: Accuracy with respect to azimuth variation for destroyer and frigate 
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Figure 32: Accuracy with respect to azimuth variation for Point Sur and merchant 
ship 
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Analyzing the results of these graphs, we can verify that the major errors were 
related to high azimuth angles. This error pattern helped us to decide to use an unevenly 
spaced training set. In the second experiment, we increased the number of azimuth 
training angles by using small steps (5o) in high azimuth angles.  

C. SECOND EXPERIMENT 

In the second experiment, we increased the number of training azimuth angles by 
using an unevenly spaced training set. For low azimuth angles (-45o to 45o), we kept the 
15o step, but for high azimuth angles we chose a smaller step of 5o .The new training set 
contained 96 views of each of the five ship types taken at the following viewpoints: {(θ, 
α), θ = -90, -85, -80, -75, -70, -65, -60, -55, -50, -45, -30, -15, 0, 15, 30, 45, 50, 55, 60, 
65, 70, 75, 80, 85; α = 0, 15, 30, 45}, where θ and α represent azimuth and elevation 
angles respectively. 

The neural network and testing set were the same used in the first experiment. We 
obtained 91.2% accuracy. We also tried another neural network architecture with 30 
hidden nodes and the classification rate improved to 94.8%. Details of these experiments 
are summarized in Table 3. 

Network Parameters Network-2 Network-3 

# input nodes 12 12 

# nodes in hidden layer 20 30 

# output nodes 5 5 

# training set 480 (24 x 4 x 5) 480 (24 x 4 x 5) 

# test set 3600 (180 x 4 x 5) 3600 (180 x 4 x 5) 

Accuracy 91.2% 94.8% 

                                Table 3: Neural networks for experiment 2 

As we can see in Table 3, with a bigger training set and 30 hidden neurons the 
neural  network-3 yielded the best accuracy. Figures 33 to 35 show the classification 
error percentage with respect to azimuth for network-3. 
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Figure 33: Accuracy with respect to azimuth for aircraft carrier and destroyer 

 

42 



 

Figure 34: Accuracy with respect to azimuth for frigate and Point Sur 
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              Figure 35: Accuracy with respect to azimuth for merchant ship 

To analyze the elevation behavior of the neural network-3, we graphed, for each 
ship type, the classification error percentage with respect to elevation. Views of the three-
dimensional model were calculated in increments of 1o in elevation, starting with 0o and 
ending with 45o, and using the same 24 azimuth angles used during training phase of 
network-3 (Figures 36 to 38). 

Analyzing Figures 36 to 38, we can verify that the major errors were related to 
small elevation angles. This elevation error pattern inspired us to perform the third 
experiment, this time we increased the number of elevation training angles. The idea was 
to improve the classification accuracy of network-3 by training with more elevation 
angles.   
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Figure 36: Accuracy with respect to elevation for aircraft carrier and destroyer 
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      Figure 37:Accuracy with respect to elevation for frigate and Point Sur 
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               Figure 38:Accuracy with respect to elevation for merchant ship 

D. THIRD EXPERIMENT  

To improve the classification accuracy of network-3 we increased the number of 
elevation angles used for training in a third experiment. The new training set contains 168 
views of each of the five ship types taken at the following viewpoints: {(θ, α), θ = -90o, -
85o, -80o, -75o, -70o, -65o, -60o, -55o, -50o, -45o, -30o, -15o, 0o, 15o, 30o, 45o, 50o, 55o, 60o, 
65o, 70o, 75o, 80o, 85o; α = 0o, 7o, 15o, 22o, 30o, 45o}, where θ and α represent azimuth 
and elevation angles respectively. The neural network and testing set were the same used 
before. We obtained 85.4% discrimination leaving an overall 14.6% error rate (Table 4). 

This new architecture presented worse results because the neural network did not 
converge during the training phase using the backpropagation algorithm. This 
convergence problem was due to the large number of the training samples. 
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Network Parameters Network-4 

# input nodes 12 

# nodess in hidden layer 30 

# output nodes 5 

# training set 720 (24 x 6 x 5) 

# test set 3600 (180 x 4 x 5) 

Accuracy 85.4% 

                        Table 4: Neural network for experiment 3 

E. FOURTH EXPERIMENT 

The third experiment has proved that the neural network-3 (accuracy of 94.8%) 
was our optimized solution. Thus, it was adopted for testing with the whole set of model 
images and with the real FLIR images.  

The fourth experiment was to apply our approach to a large final testing set. This 
final set contained the images of the three-dimensional ship models taken at a regular 
pace of 1o in azimuth and elevation increments, totaling 41400 images (180 x  46 x 5). 
This experiment was performed using the neural network-3, from the second experiment. 
The average classification accuracy achieved was 87.3%. Table 5 shows the confusion 
matrix of counts. 
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   Inferred  
.      Type   
Input  
Type. 

Aircraft 
Carrier 

Destroyer Frigate Point 
Sur 

Merchant Accuracy 

Aircraft 
Carrier 

6711 201 425 393 550 81.1% 

Destroyer 318 7301 397 257 7 88.2% 

Frigate 345 788 6809 217 121 82.2% 

Pointsur 67 146 177 7873 17 95.1% 

Merchant 297 188 291 49 7455 90.0% 

Precision 86.7% 84.7% 84.1% 89.6% 91.5%  

Overall probability of classification: 87.3% 

Table 5: Confusion matrix for 41,400 views of modeled images and network-3 

F. FIFTH EXPERIMENT 

We also ran the system on the 25 real FLIR images, as described in chapter IV. 
This experiment was also performed using the neural network-3, from the second 
experiment. The average classification accuracy achieved was 68%. Table 6 shows the 
confusion matrix of counts.    

   Inferred  
.      Type   
Input 
Type 

Aircraft 
Carrier 

Destroyer Point 
Sur 

Merchant Recall 

Aircraft 
Carrier 

3 0 0 1 75% 

Destroyer 0 2 0 0 100% 

Pointsur 0 1 3 0 75% 

Merchant 6 0 0 9 60% 

Precision 33.3% 66.6% 100% 90%  

Overall probability of classification: 68% 

Table 6: Confusion matrix for real ship FLIR images and network-3. 
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Figures 39 to 44 show all the FLIR images and respective results. The first 
columns show the original FLIR images; the middle columns show the silhouettes after 
the segmentation process; and the third columns show the neural network’s guess. 

      Figure 39: Classification results for aircraft carrier FLIR images 
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              Figure 40: Classification results for merchant FLIR images  
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              Figure 41: Classification results for merchant FLIR images 
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               Figure 42: Classification results for merchant FLIR images 
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              Figure 43: Classification results for point sur FLIR images 

54 



 

55 

                  Figure 44: Classification results for destroyer FLIR 
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VI. CONCLUSIONS 

This thesis explored a moment-based method for ship-type recognition. 
Numerical simulations were carried out with a set of five three-dimensional ship models. 
Moment-invariant signatures were used as the input to a neural-network classifier. The 
classifier achieved a 87.5% correct classification rate (within the set of test-models) for a 
complete range of point of view around the input ship model. The success is due to a 
combination of a robust feature extraction and the neural-network generalization 
capability. 

A test with 25 real FLIR ship images was also done. Experimental results were 
worse due to the noisy extracted silhouettes. The maximum classification accuracy of 
68% should only be considered a rough approximation to the sort of accuracies one can 
expect from a fully operational classifier. 

A larger database of real FLIR ship images needs to be tested. The acquisition 
process should eliminate undesired alphanumeric data superimposed on the FLIR images. 
Using this database, our system could be trained using the real FLIR images from 
different viewpoints, and this could provide better performance on new real images. 
Another recommendation is to investigate different segmentation algorithms capable of 
addressing some predictable distortions like the ship shadow/reflection on the sea surface 
and the smoke coming out from stacks. As we can see in Figure 35, the merchant FLIR 
images presented the worst accuracy due to these distortions. 

In conclusion, this thesis demonstrated how ship recognition using models is 
complicated by the imaging process, which involves a viewpoint-dependent two-
dimensional projection of three-dimensional ship model. As a consequence, the 
appearance of a ship in an image can vary greatly with its aspect and scale. Ship 
recognition from infrared images is further complicated because the extracted ship 
silhouettes can be noisy due to the distortions caused by shadows, smoke, and other 
factors. 

This thesis demonstrated the potential of a simple algorithm for this particular 
application. The modest requirements in terms of computer and FLIR hardware of this 
system show great potential for providing a recognition system to a variety of users. 
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APPENDIX A. PROGRAM LISTING 
 

%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : aircarrier.m 
% Function : returns the vertices and faces to be used by the MATLAB function 
%             "patch" and construct the aircraft carrier 3-D model 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [verts,faces]=aircarrier(); 
 
verts=[122, -7,   0 %l 
  122,   7,   0 %2 
  116,   1,  -7 %3 
  114,   0,  -12 %4 
  116,  -1,  -7 %5 
  77,  -10,   0 %6 
  77,  -10,  -7 %7 
     77,   -8, -12  %8 
    68,  -10,  -7  %9 
    68,  -21,   0 %10 
    -23, -21,   0 %11 
    -23, -10,  -7 %12 
    -62, -10,   0 %13 
    -62, -10,  -7 %14 
    -60,  -8, -12   %15 
    -62,  10,   0 %16 
    -62,  10,  -7 %17 
    -60,   8, -12   %18 
    -36,  12,   0 %19 
    -36,  10,  -7 %20 
    -28,  21,   0 %21 
    -28,  10,  -7 %22 
    38,   21,   0 %23 
    38,   10,  -7  %24 
    65,   24,   0  %25 
    65,   10,  -7 %26 
    77,   10,   0 %27 
    77,   10,  -7 %28 
    77,    8, -12 %29 
    -7,  -19,   0 %30 
    -7,  -19,   9 %31 
    -7,  -15,   9 %32 
    -7,  -15,   0 %33 
    7,   -19,   0 %34 
    7,   -19,   9 %35 
    7,   -12,   9 %36 
    7,   -12,   0 %37 
    -1,  -17,   9 %38 
    -1,  -17,  20 %39 
    -1,  -15,  20 %40 
    -1,  -15,   9 %41 
    1,   -17,   9 %42 
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    1,   -17,  20 %43 
    1,   -15,   9 %44 
    1,   -15,  20];%45 
 
 %number =  32 12 
 
 plane1 = [1,2,3,4,5,5,5,5,5,5,5,5]; 
 plane2 = [1,5,6,6,6,6,6,6,6,6,6,6]; 
 plane3 = [5,6,7,7,7,7,7,7,7,7,7,7]; 
 plane4 = [4,5,7,8,8,8,8,8,8,8,8,8]; 
 plane5 = [6,9,7,7,7,7,7,7,7,7,7,7]; 
 plane6 = [6,10,9,9,9,9,9,9,9,9,9,9]; 
 plane7 = [9,10,11,12,12,12,12,12,12,12,12,12]; 
 plane8 = [11,12,13,13,13,13,13,13,13,13,13,13]; 
 plane9 = [12,13,14,14,14,14,14,14,14,14,14,14]; 
 plane10 = [7,9,12,14,15,8,8,8,8,8,8,8]; 
 plane11 = [13,16,17,14,14,14,14,14,14,14,14,14]; 
 plane12 = [14,17,18,15,15,15,15,15,15,15,15,15]; 
 plane13 = [16,19,20,17,17,17,17,17,17,17,17,17]; 
 plane14 = [19,21,22,20,20,20,20,20,20,20,20,20]; 
 plane15 = [21,23,24,22,22,22,22,22,22,22,22,22]; 
 plane16 = [23,25,26,24,24,24,24,24,24,24,24,24]; 
 plane17 = [25,27,26,26,26,26,26,26,26,26,26,26]; 
 plane18 = [26,27,28,28,28,28,28,28,28,28,28,28]; 
 plane19 = [27,3,28,28,28,28,28,28,28,28,28,28]; 
 plane20 = [27,2,3,3,3,3,3,3,3,3,3,3]; 
 plane21 = [28,3,4,29,29,29,29,29,29,29,29,29]; 
 plane22 = [17,20,22,24,26,28,29,18,18,18,18,18]; 
 flightdeck = [1,6,10,11,13,16,19,21,23,25,27,2]; 
 bottom = [4,8,15,18,29,29,29,29,29,29,29,29]; 
 tower1 = [30,31,32,33,33,33,33,33,33,33,33,33]; 
 tower2 = [30,31,35,34,34,34,34,34,34,34,34,34]; 
  tower3   = [34,35,36,37,37,37,37,37,37,37,37,37]; 
 tower4 = [32,33,37,36,36,36,36,36,36,36,36,36]; 
 tower5 = [31,32,36,35,35,35,35,35,35,35,35,35]; 
 mast1  = [38,39,40,41,41,41,41,41,41,41,41,41]; 
 mast2  = [38,39,43,42,42,42,42,42,42,42,42,42]; 
 mast3  = [42,44,45,43,43,43,43,43,43,43,43,43]; 
 mast4  = [41,44,45,40,40,40,40,40,40,40,40,40]; 
 mast5  = [39,43,45,40,40,40,40,40,40,40,40,40]; 
   %faces   
     
   faces=[ plane1  
 plane2  
 plane3  
 plane4  
 plane5  
 plane6  
 plane7   
 plane8  
   plane9   
   plane10   
 plane11  
 plane12  
 plane13  
 plane14  
 plane15  
 plane16  
 plane17  
 plane18   
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 plane19  
 plane20  
 plane21   
 plane22  
 flightdeck  
 bottom  
 tower1   
 tower2  
  tower3     
 tower4   
 tower5  
 mast1   
 mast2    
 mast3   
 mast4   
 mast5 ]; 
%============================================================================= 
% End of file aircarrier.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : destroyer.m 
% Function : returns the vertices and faces to be used by the MATLAB function 
%             "patch" in order to construct the destroyer 3-D model 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [verts,faces]=destroyer(); 
 
verts=[140, 0,   5 %l 
  90,   -16, 3 %2 
  90,   -16,  -10 %3 
  125,   0,  -10 %4 
  50,  -20,  0 %5 
  50,  -20,   -10 %6 
  44,  -20,  0 %7 
     44,   -20, 5  %8 
    38,  -20,  5  %9 
    29,  -20,   5 %10 
    8, -20,   5 %11 
    8, -20,  0 %12 
    -8, -20,   0 %13 
    -8, -20,  -10 %14 
    -8,  -20, 5   %15 
    -55,  -14,   5 %16 
    -55,  -14,  -3 %17 
    -55,   -13, -10   %18 
    -85,  -10,   -3 %19 
    -84,  -9,  -10 %20 
    -85,  10,   -3 %21 
    -84,  9,  -10 %22 
    -55,   14,   -3 %23 
    -55,   13,  -10  %24 
    -55,   14,   5  %25 
    -8,   20,  5 %26 
    -8,   20,   0 %27 
    -8,   20,  -10 %28 
    8,    20, 0 %29 
    8,  20,   5 %30 
    29,  20,   5 %31 
    38,  20,   5 %32 
    44,  20,   5 %33 
    44,   20,   0 %34 
    50,   20,   0 %35 
    50,   20,   -10 %36 
    90,   16,   3 %37 
    90,  15,   -10 %38 
    50,  -11,  0 %39 
    50,  11,  0 %40 
    50,  -6,   5 %41 
    44,   -6,   5 %42 
    44,   -11,  5 %43 
    38,   -20,   5 %44 
      44,   -20,  5%45 
      50,   -11,  5%46 
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      50,     6,  5%47 
      44,     6,  5%48 
      44,    11,  5%49 
      38,    20,  5%50 
      44,    20,  5%51 
      50,    11,  5%52 
      50,    -6, 14%53 
      44,    -6, 14%54 
      44,     6, 14%55 
      50,     6, 14%56 
      38,   -19, 20%57 
      44,   -11, 20%58 
      44,    11, 20%59 
      38,    19, 20%60 
      29,    19, 20%61 
      25,    11, 20%62 
      25,   -11, 20%63 
      29,   -19, 20%64 
      0,    -10,  5%65 
      20,   -10,  5%66 
      20,    10,  5%67 
      0,     10,  5%68 
      24,    11,  5%69 
      24,   -11,  5%70 
      6,     -4, 20%71 
      14,    -4, 20%72 
      14,     4, 20%73 
      6,      4, 20%74 
      0,    -10,  0%75 
      0,     10,  0%76 
      -32,  -10,  5%77 
      -8,   -10,  5%78 
      -8,    10,  5%79 
      -32,   10,  5%80 
      -22,   -4, 20%81 
      -14,   -4, 20%82 
      -14,    4, 20%83 
      -22,    4, 20%84 
      29,    -2, 20%85 
      33,    -2, 20%86 
      33,     2, 20%87 
      29,     2, 20%88 
      25,    -2, 50%89 
      29,    -2, 50%90 
      29,     2, 50%91 
      25,     2, 50];%92 
       
       
 
 %number =  32 12 
 
 plane1 = [1,2,3,4,4,4,4,4,4,4,4]; 
 plane2 = [2,5,6,3,3,3,3,3,3,3,3]; 
 plane3 = [5,7,8,9,10,11,12,13,14,6,6]; 
 plane4 = [13,15,16,17,18,14,14,14,14,14,14]; 
 plane5 = [17,19,20,18,18,18,18,18,18,18,18]; 
 plane6 = [19,21,22,20,20,20,20,20,20,20,20]; 
 plane7 = [21,23,24,22,22,22,22,22,22,22,22]; 
 plane8 = [23,25,26,27,28,24,24,24,24,24,24]; 
 plane9 = [27,29,30,31,32,33,34,35,36,28,28]; 
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 plane10 = [35,37,38,36,36,36,36,36,36,36,36]; 
 plane11 = [37,1,4,38,38,38,38,38,38,38,38]; 
 botton = [4,3,6,14,18,20,22,24,28,36,38]; 
 deck1  = [1,2,37,37,37,37,37,37,37,37,37]; 
 deck2  = [2,5,35,37,37,37,37,37,37,37,37]; 
 deck3  = [5,7,39,39,39,39,39,39,39,39,39]; 
 deck4  = [34,35,40,40,40,40,40,40,40,40,40]; 
 deck5  = [46,41,42,43,9,8,8,8,8,8,8]; 
 deck6  = [47,48,49,32,51,52,52,52,52,52,52]; 
 deck7  = [53,54,55,56,56,56,56,56,56,56,56]; 
 deck8  = [57,58,59,60,61,62,63,64,64,64,64]; 
 deck9  = [10,11,65,66,67,68,30,31,69,70,70]; 
 deck10  = [13,12,75,76,29,27,27,27,27,27,27]; 
 deck11  = [16,15,78,77,80,79,26,25,25,25,25]; 
 deck12  = [19,17,23,21,21,21,21,21,21,21,21]; 
 lateral1 = [8,46,39,7,7,7,7,7,7,7,7]; 
 lateral2 = [39,46,41,53,56,47,52,40,40,40,40]; 
 lateral3 = [40,52,33,34,34,34,34,34,34,34,34]; 
 lateral4 = [54,53,41,42,42,42,42,42,42,42,42]; 
 lateral5 = [55,56,47,48,48,48,48,48,48,48,48]; 
 lateral6 = [58,59,49,48,55,54,42,43,43,43,43]; 
 lateral7 = [57,58,43,9,9,9,9,9,9,9,9]; 
 lateral8 = [60,59,49,32,32,32,32,32,32,32,32]; 
 lateral9 = [64,57,9,10,10,10,10,10,10,10,10]; 
   lateral10= [61,60,32,31,31,31,31,31,31,31,31]; 
   lateral11= [63,64,10,70,70,70,70,70,70,70,70]; 
 lateral12= [62,61,31,69,69,69,69,69,69,69,69]; 
 lateral13= [62,63,70,69,69,69,69,69,69,69,69]; 
 lateral14= [65,11,12,75,75,75,75,75,75,75,75]; 
 lateral15= [68,30,29,76,76,76,76,76,76,76,76]; 
 lateral16= [65,75,76,68,68,68,68,68,68,68,68]; 
 lateral17= [15,13,27,26,26,26,26,26,26,26,26]; 
   lateral18= [16,17,23,25,25,25,25,25,25,25,25]; 
   stack1   =  [71,72,66,65,65,65,65,65,65,65,65]; 
   stack2   =  [74,73,67,68,68,68,68,68,68,68,68]; 
   stack3   =  [65,71,74,68,68,68,68,68,68,68,68]; 
   stack4   =  [66,72,73,67,67,67,67,67,67,67,67]; 
   stack5   =  [71,72,73,74,74,74,74,74,74,74,74]; 
   stack6   =  [77,81,82,78,78,78,78,78,78,78,78]; 
   stack7   =  [80,84,83,79,79,79,79,79,79,79,79]; 
   stack8   =  [77,81,84,80,80,80,80,80,80,80,80]; 
   stack9   =  [78,82,83,79,79,79,79,79,79,79,79]; 
   stack10  =  [81,82,83,84,84,84,84,84,84,84,84]; 
   mast1    =  [85,86,90,89,89,89,89,89,89,89,89]; 
   mast2    =  [86,87,91,90,90,90,90,90,90,90,90]; 
   mast3    =  [87,88,92,91,91,91,91,91,91,91,91]; 
   mast4    =  [88,85,89,92,92,92,92,92,92,92,92]; 
   mast5    =  [89,90,91,92,92,92,92,92,92,92,92]; 
 
   %faces   
     
   faces=[plane1 
      plane2 
      plane3 
      plane4 
      plane5 
      plane6 
      plane7 
      plane8 
      plane9 
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      plane10 
      plane11 
      botton 
      deck1  
      deck2  
      deck3  
      deck4  
      deck5  
      deck6  
      deck7  
      deck8  
      deck9  
      deck10 
      deck11  
      deck12 
      lateral1 
      lateral2 
      lateral3 
      lateral4 
      lateral5 
      lateral6 
      lateral7 
      lateral8 
      lateral9 
      lateral10 
      lateral11 
      lateral12 
      lateral13 
      lateral14 
      lateral15 
      lateral16 
      lateral17 
      lateral18 
      stack1   
      stack2   
      stack3   
      stack4   
      stack5   
      stack6   
      stack7  
      stack8  
      stack9   
      stack10 
      mast1 
      mast2 
      mast3 
      mast4 
      mast5]; 
%============================================================================= 
% End of file destroyer.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : frigate.m 
% Function : returns the vertices and faces to be used by the MATLAB function 
%             "patch" in order to construct the frigate 3-D model 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [verts,faces]=frigate(); 
 
verts=[128, 0,   16 %l 
  96,   -13, 14 %2 
  96,   -7,  0 %3 
  112,   0,  0 %4 
  92,  -15,  12 %5 
  92,  -9,   0 %6 
  60,  -20,  10 %7 
     60,   -18, 0  %8 
    58,  -20,  10  %9 
    48,  -20,  10 %10 
    -26, -20,  10 %11 
    -60, -20,  10 %12 
    -60, -18,   0 %13 
    -102,-15,  10 %14 
    -98,  -13,  0   %15 
    -102,  15, 10 %16 
    -98,  13,  0 %17 
    -60,   20, 10   %18 
    -60,  18,   0 %19 
    -26,  20,  10 %20 
    48,  20,   10 %21 
    58,  20,   10 %22 
    60,  20,   10  %23 
    60,18,0  %24 
    92,15,12 %25 
    92,9,0 %26 
    96,13,14 %27 
    96,7,0 %28 
    60,-13,10 %29 
    60,13,10 %30 
    -12,-12,10 %31 
    8,-12,10 %32 
    8,-16,10 %33 
    -12,12,10 %34 
    8,12,10 %35 
    8,16,10 %36 
    58,-20,20 %37 
    48,-20,20 %38 
    48,-16,20 %39 
    8,-16,20 %40 
    8,-12,20 %41 
    -12,-12,20 %42 
    -26,-20,20 %43 
    -60,-20,20 %44 
      -60,20,20   %45 
      -26,20,20   %46 

66 



 

      -12,12,20   %47 
      8,12,20     %48 
      8,16,20     %49 
      48,16,20    %50 
      48,20,20    %51 
      58,20,20    %52 
      60,13,20    %53 
      60,-13,20   %54 
      57,-13,25   %55 
      43,-13,25   %56 
      43,13,25    %57 
      57,13,25    %58 
      60,7,25     %59 
      60,-7,25    %60 
      49,-20,20   %61 
      49,-20,12   %62 
      51,-20,12   %63 
      51,-20,20   %64 
      52,-20,20   %65 
      52,-20,12   %66 
      56,-20,22   %67 
      58,-20,22   %68 
      49,20,20    %69 
      49,20,12    %70 
      51,20,12    %71 
      51,20,20    %72 
      52,20,20    %73 
      52,20,12    %74 
      56,20,22    %75 
      58,20,22    %76 
      60,-13,22   %77 
      60,-7,22    %78 
      60,7,22     %79 
      60,13,22    %80 
      60,-7,20    %81 
      57,-13,20   %82 
      60,7,20     %83 
      57,13,20    %84 
      43,-13,20   %85 
      43,13,20    %86 
      59,-16,20   %87 
      59,-16,10   %88 
      59,16,20    %89 
      59,16,10    %90 
      -39,-5,20   %91 
      -37,-4,25   %92 
      -37,4,25    %93 
      -39,5,20    %94 
      -29,-4,25   %95 
      -28,-5,20   %96 
      -29,4,25    %97 
      -28,5,20    %98 
      -16,-3,24   %99 
      -10,-3,24    %100 
      -10,-3,20    %101 
      -16,-3,20   %102 
      -16,3,24    %103 
      -10,3,24     %104 
      -10,3,20     %105 
      -16,3,20    %106 
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      18,-1,48    %107 
      20,-1,48    %108 
      20,1,48     %109 
      18,1,48     %110 
      18,-1,20    %111 
      20,-1,20    %112 
      20,1,20     %113 
      18,1,20     %114 
      36,-2,42    %115 
      39,-2,42    %116 
      39,2,42     %117 
      36,2,42     %118 
      36,-2,20    %119 
      39,-2,20    %120 
      39,2,20     %121 
      36,2,20     %122 
      48,-2,33    %123 
      52,-2,33    %124 
      52,2,33     %125 
      48,2,33     %126 
      48,-2,25    %127 
      52,-2,25    %128 
      52,2,25     %129 
      48,2,25];     %130 
 %number =  66 planes 
 plane1 = [1,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4]; 
 plane2 = [2,5,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]; 
 plane3 = [5,7,8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6]; 
 plane4 = [7,9,10,11,12,13,8,8,8,8,8,8,8,8,8,8,8,8]; 
 plane5 = [12,14,15,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13]; 
 plane6 = [14,16,17,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]; 
 plane7 = [16,18,19,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17]; 
 plane8 = [18,20,21,22,23,24,19,19,19,19,19,19,19,19,19,19,19,19]; 
 plane9 = [23,25,26,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24]; 
 plane10 = [25,27,28,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26]; 
 plane11 = [27,1,4,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28]; 
 botton = [4,3,6,8,13,15,17,19,24,26,28,28,28,28,28,28,28,28]; 
 deck1  = [1,2,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27]; 
 deck2  = [2,5,25,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27]; 
 deck3  = [5,7,9,29,30,22,23,25,25,25,25,25,25,25,25,25,25,25]; 
 deck4  = [9,10,11,31,32,33,88,88,88,88,88,88,88,88,88,88,88,88]; 
 deck5  = [22,21,20,34,35,36,90,90,90,90,90,90,90,90,90,90,90,90]; 
 deck6  = [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54]; 
 deck7  = [12,14,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18]; 
 deck8  = [55,56,57,58,59,60,60,60,60,60,60,60,60,60,60,60,60,60]; 
 lateral1 = [9,10,38,61,62,63,64,65,66,67,68,68,68,68,68,68,68,68]; 
 lateral2 = [22,21,51,69,70,71,72,73,74,75,76,76,76,76,76,76,76,76]; 
 lateral3 = [77,78,60,59,79,80,30,29,29,29,29,29,29,29,29,29,29,29]; 
 lateral4 = [68,77,29,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9]; 
 lateral5 = [76,80,30,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22]; 
 lateral6 = [55,60,81,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82]; 
 lateral7 = [58,59,83,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84]; 
 lateral8 = [56,55,82,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85]; 
 lateral9 = [57,58,84,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86]; 
   lateral10= [56,57,86,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85]; 
   lateral11= [87,88,33,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40]; 
 lateral12= [89,90,36,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49]; 
 lateral13= [40,33,32,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41]; 
 lateral14= [49,36,35,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48]; 
 lateral15= [31,42,41,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32]; 
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 lateral16= [34,47,48,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35]; 
 lateral17= [43,11,31,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42]; 
   lateral18= [46,20,34,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47]; 
   lateral19= [44,43,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12]; 
   lateral20= [45,46,20,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18]; 
   lateral21= [44,12,18,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45]; 
   stack1   =  [91,92,93,94,94,94,94,94,94,94,94,94,94,94,94,94,94,94]; 
   stack2   =  [91,92,95,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96]; 
   stack3   =  [96,95,97,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98]; 
   stack4   =  [94,93,97,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98]; 
   stack5=[92,95,97,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93];   
turret1=[99,100,101,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102
];   
turret2=[100,104,105,101,101,101,101,101,101,101,101,101,101,101,101,101,101,10
1];   
turret3=[103,104,105,106,106,106,106,106,106,106,106,106,106,106,106,106,106,10
6];   
turret4=[99,102,106,103,103,103,103,103,103,103,103,103,103,103,103,103,103,103
];   
turret5=[99,100,104,103,103,103,103,103,103,103,103,103,103,103,103,103,103,103
];   
mast1=[107,108,112,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111]
;   
mast2=[108,109,113,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112]
;   
mast3=[109,110,114,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113]
;   
mast4=[110,107,111,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114]
;   
mast5=[107,108,109,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110]
;   
surface1=[115,116,120,119,119,119,119,119,119,119,119,119,119,119,119,119,119,1
19];   
surface2=[116,117,121,120,120,120,120,120,120,120,120,120,120,120,120,120,120,1
20];   
surface3=[117,118,122,121,121,121,121,121,121,121,121,121,121,121,121,121,121,1
21];   
surface4=[118,115,119,122,122,122,122,122,122,122,122,122,122,122,122,122,122,1
22];   
surface5=[115,116,117,118,118,118,118,118,118,118,118,118,118,118,118,118,118,1
18];   
radar1=[123,124,128,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127
];   
radar2=[124,125,129,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
];   
radar3=[125,126,130,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129
];   
radar4=[126,123,127,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130
];   
radar5=[123,124,125,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126
]; 
   %faces  66 planes     
   faces=[plane1 
      plane2 
      plane3 
      plane4 
      plane5 
      plane6 
      plane7 
      plane8 
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      plane9 
      plane10 
      plane11 
      botton 
      deck1  
      deck2  
      deck3  
      deck4  
      deck5  
      deck6  
      deck7  
      deck8  
      lateral1 
      lateral2 
      lateral3 
      lateral4 
      lateral5 
      lateral6 
      lateral7 
      lateral8 
      lateral9 
      lateral10 
      lateral11 
      lateral12 
      lateral13 
      lateral14 
      lateral15 
      lateral16 
      lateral17 
      lateral18 
      lateral19 
      lateral20 
      lateral21 
      stack1   
      stack2   
      stack3   
      stack4   
      stack5   
      turret1 
      turret2 
      turret3 
      turret4 
      turret5 
      mast1 
      mast2 
      mast3 
      mast4 
      mast5 
      surface1 
      surface2 
      surface3 
      surface4 
      surface5 
      radar1 
      radar2 
      radar3 
      radar4 
      radar5]; 
%============================================================================= 
% End of file frigate.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : pointsur.m 
% Function : returns the vertices and faces to be used by the MATLAB function 
%             "patch" in order to construct the research ship (point sur) 3-D 
model 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [verts,faces]=pointsur(); 
 
 
verts=[93,  0, 0 %0 
  81,  0, -15 %l 
  39, 16, -15 %2 
  -43, 16, -15 %3 
  -43,-16, -15 %4 
  39, -16, -15 %5 
  51, -16, 0 %6 
  47, -16,  -5 %7 
     37, -10,  -5  %8 
     37,-16,  12  %9 
    17, -16,  12 %10 
    15, -16,  -5 %11 
    -43,-16,  -8 %12 
    -43, 16,  -8 %13 
    15, 16,  -5 %14 
    17, 16,  12   %15 
    37, 16,  12 %16 
    37, 10,  -5 %17 
    47, 16,  -5   %18 
    51, 16, 0 %19 
    21,   3,  12 %20 
    17,  3,  12 %21 
    17, -3,  12 %22 
    21, -3,  12 %23 
    21,  3,  19  %24 
    17,  3,  19  %25 
    17, -3,  19 %26 
    21, -3,  19 %27 
    6, 16,  -8 %28 
    -6, 16,  -8 %29 
    -6,  8,  -8 %30 
    6,  8,  -8 %31 
    6, 16,   6 %32 
    -6, 16, 6 %33 
    -6,  8, 6 %34 
    6,  8, 6 %35 
    -16, 16,  -8 %36 
    -16, 16,  -5 %37 
    -16,-16,  -5 %38 
    -16,-16,  -8 %39 
    38, -16, 8 %40 
    38, 16, 8 %41 
    31, 16, 8 %42 
    31, 16,  12 %43 
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    31, -16,  12 %44 
    31, -16, 8 %45 
    17, -16,  -8 %46 
    17, 16,  -8 %47 
    41, -16, 4 %48 
    41, 16, 4 %49 
    33, 16, 4 %50 
    33, -16, 4 %51 
    31, -16,  -5 %52 
    31, 16,  -5 %53 
    31, 16, 4 %54 
    27, 16, 4 %55 
    25, 16,  -5 %56 
    29, 16,  -5 %57 
    25, 16, 4 %58 
    21, 16, 4 %59 
    19, 16,  -5 %60 
    23, 16,  -5   %61 
    31, -16, 4 %62 
    27, -16, 4 %63 
      25, -16,  -5 %64 
    29, -16,  -5 %65 
    25, -16, 4 %66 
    21, -16, 4 %67 
    19, -16,  -5 %68 
    23, -16,  -5 %69 
      37, 10, 4 %70 
    37, -10, 4 %71 
    17, -10, 4 %72 
    17, -10,  -5 %73 
    17, 10,  -5 %74 
    17, 10, 4]; %75 
 
 %number =  32 
 
 plane0 = [0,1,2,18,19,19,19,19,19,19,19,19,19,19,19,19]; 
 plane1 = [2,3,13,47,14,18,18,18,18,18,18,18,18,18,18,18]; 
 plane2 = [4,5,7,11,46,12,12,12,12,12,12,12,12,12,12,12]; 
 plane3 = [0,6,7,5,1,1,1,1,1,1,1,1,1,1,1,1]; 
 late0 = [47,14,37,36,36,36,36,36,36,36,36,36,36,36,36,36]; 
 late1 = [8,71,72,73,73,73,73,73,73,73,73,73,73,73,73,73]; 
 late2 = [17,70,75,74,74,74,74,74,74,74,74,74,74,74,74,74]; 
 late3 = [52,51,48,40,45,44,10,11,68,67,66,69,64,63,62,65]; 
 late4 = [53,50,49,41,42,43,15,14,60,59,58,61,56,55,54,53]; 
 bottom = [1,2,3,4,5,5,5,5,5,5,5,5,5,5,5,5]; 
 glass0 = [48,40,41,49,49,49,49,49,49,49,49,49,49,49,49,49]; 
 glass1 = [45,44,43,42,42,42,42,42,42,42,42,42,42,42,42,42]; 
 glass2 = [8,17,70,71,71,71,71,71,71,71,71,71,71,71,71,71]; 
 radar0 = [20,24,27,23,23,23,23,23,23,23,23,23,23,23,23,23]; 
 radar1 = [20,21,25,24,24,24,24,24,24,24,24,24,24,24,24,24]; 
 radar2 = [22,23,27,26,26,26,26,26,26,26,26,26,26,26,26,26]; 
 stack0 = [28,32,35,31,31,31,31,31,31,31,31,31,31,31,31,31]; 
 stack1 = [32,33,29,28,28,28,28,28,28,28,28,28,28,28,28,28]; 
 stack2 = [30,31,35,34,34,34,34,34,34,34,34,34,34,34,34,34]; 
 stack3 = [30,34,33,29,29,29,29,29,29,29,29,29,29,29,29,29]; 
 deck0 = [0,19,6,6,6,6,6,6,6,6,6,6,6,6,6,6]; 
 deck1 = [6,7,18,19,19,19,19,19,19,19,19,19,19,19,19,19]; 
 deck2 = [7,8,17,18,18,18,18,18,18,18,18,18,18,18,18,18]; 
 deck3 = [15,16,9,10,22,23,20,21,21,21,21,21,21,21,21,21]; 
 deck4 = [24,25,26,27,27,27,27,27,27,27,27,27,27,27,27,27]; 
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 deck5 = [14,15,21,25,26,22,10,11,11,11,11,11,11,11,11,11]; 
  deck6 = [11,38,37,29,30,31,28,14,14,14,14,14,14,14,14,14]; 
 deck7 = [36,37,38,39,39,39,39,39,39,39,39,39,39,39,39,39]; 
 deck8 = [36,13,12,39,39,39,39,39,39,39,39,39,39,39,39,39]; 
 deck9 = [3,4,12,13,13,13,13,13,13,13,13,13,13,13,13,13]; 
 deck10 = [32,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35]; 
 deck11 = [40,45,42,41,41,41,41,41,41,41,41,41,41,41,41,41]; 
    
   %faces   
     
   faces=[ plane0 
  plane1 
  plane2 
  plane3 
  late0 
  late1 
  late2 
  late3 
  late4 
  bottom 
  glass0 
      glass1 
      glass2 
      radar0 
      radar1 
      radar2 
      stack0 
      stack1 
      stack2 
     stack3 
    deck0 
    deck1 
    deck2 
    deck3 
    deck4 
    deck5 
    deck6 
    deck7 
    deck8 
    deck9 
      deck10 
      deck11]; 
 
faces=faces+1; 
%============================================================================= 
% End of file pointsur.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : merchant.m 
% Function : returns the vertices and faces to be used by the MATLAB function 
%             "patch" in order to construct the merchant 3-D model 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [verts,faces]=merchant(); 
 
verts=[115,-11,0    %1 
   115,-15,10       %2 
   118.9,-14.5,10.8 %3 
   117.8,-10.6,0    %4 
   122.5,-13,11.5   %5 
   120.5,-9.5,0     %6 
   125.6,-10.6,12   %7  
   122.8,-7.8,0     %8 
   128,-7.5,12.5    %9 
   124.5,-5.5,0     %10    
   129.5,-3.9,13    %11 
   125.6,-2.85,0    %12 
   130,0,13         %13 
   126,0,0          %14 
   129.5,3.9,13     %15 
   125.6,2.85,0     %16 
   128,7.5,12.5     %17 
   124.5,5.5,0      %18  
   125.6,10.6,12    %19 
   122.8,7.8,0      %20    
   122.5,13,11.5    %21 
   120.5,9.5,0      %22 
   118.9,14.5,10.8  %23 
   117.8,10.6,0     %24 
   115,15,10        %25 
   115,11,0         %26 
   96,-15,10        %27 
   93,-15,7         %28  
   -130,-15,7       %29 
   -128,-11,0       %30    
   -128,11,0        %31 
   -130,15,7        %32 
   93,15,7          %33 
   96,15,10         %34 
   -80,-15,23       %35 
   -80,15,23        %36 
   -84,15,23        %37 
   -84,11,23        %38 
   -91,11,23        %39 
   -91,-11,23       %40    
   -84,-11,23       %41 
   -84,-15,23       %42 
   -91,-11,17       %43 
   -91,11,17        %44 
   -110,11,17       %45 
   -110,-11,17      %46 
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   -110,11,7        %47 
   -110,-11,7        %48 
   -80,-15,21       %49 
   -80,-11,19       %50    
   -80,-11,7        %51 
   -80,11,7         %52 
   -80,11,19        %53 
   -80,15,21        %54 
   -84,-15,21       %55 
   -84,-11,19       %56 
   -91,-11,7        %57 
   -84,15,21        %58 
   -84,11,19        %59 
   -91,11,7         %60    
   -99,-3,17        %61 
   -99,3,17         %62 
   -104,3,17        %63 
   -104,-3,17       %64 
   -99,3,27         %65 
   -99,-3,27        %66 
   -104,3,27        %67 
   -104,-3,27       %68 
   2,-11,7          %69 
   2,-9,7           %70      
   0,-9,7           %71 
   0,-11,7          %72 
   2,-11,20         %73 
   2,-9,20          %74 
   0,-11,20         %75 
   0,-9,20          %76 
   2,9,7            %77 
   2,11,7           %78 
   0,11,7           %79 
   0,9,7            %80    
   2,9,20           %81 
   2,11,20          %82 
   0,11,20          %83 
   0,9,20           %84 
   111,-1,10        %85 
   111,1,10         %86 
   109,1,10         %87 
   109,-1,10        %88 
   111,-1,26        %89 
   111,1,26         %90    
   109,1,26         %91 
   109,-1,26        %92 
   -89,-1,23        %93 
   -89,1,23         %94 
   -91,1,23         %95 
   -91,-1,23        %96 
   -89,-1,30        %97 
   -89,1,30         %98 
   -91,1,30         %99 
   -91,-1,30];      %100    
 
 %planes    
 
   proa1 = [1,2,3,4,4,4,4,4,4,4,4,4,4,4,4]; 
   proa2 = [3,5,6,4,4,4,4,4,4,4,4,4,4,4,4]; 
   proa3 = [5,7,8,6,6,6,6,6,6,6,6,6,6,6,6]; 
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   proa4 = [7,9,10,8,8,8,8,8,8,8,8,8,8,8,8]; 
   proa5 = [9,11,12,10,10,10,10,10,10,10,10,10,10,10,10]; 
   proa6 = [11,13,14,12,12,12,12,12,12,12,12,12,12,12,12]; 
   proa7 = [13,15,16,14,14,14,14,14,14,14,14,14,14,14,14]; 
   proa8 = [15,17,18,16,16,16,16,16,16,16,16,16,16,16,16]; 
   proa9 = [17,19,20,18,18,18,18,18,18,18,18,18,18,18,18]; 
   proa10= [19,21,22,20,20,20,20,20,20,20,20,20,20,20,20]; 
   proa11= [21,23,24,22,22,22,22,22,22,22,22,22,22,22,22]; 
   proa12= [23,25,26,24,24,24,24,24,24,24,24,24,24,24,24];    
   plane1 = [1,2,27,28,29,30,30,30,30,30,30,30,30,30,30]; 
   plane2 = [29,30,31,32,32,32,32,32,32,32,32,32,32,32,32]; 
   plane3 = [26,25,34,33,32,31,31,31,31,31,31,31,31,31,31];    
   deck1 = [2,3,5,7,9,11,13,15,17,19,21,23,25,25,25]; 
   deck2 = [2,25,34,27,27,27,27,27,27,27,27,27,27,27,27]; 
   deck3 = [27,34,33,28,28,28,28,28,28,28,28,28,28,28,28]; 
   deck4 = [28,33,32,29,29,29,29,29,29,29,29,29,29,29,29]; 
   deck5 = [35,36,37,38,39,40,41,42,42,42,42,42,42,42,42]; 
   deck6 = [40,39,44,43,43,43,43,43,43,43,43,43,43,43,43]; 
   deck7 = [43,44,45,46,46,46,46,46,46,46,46,46,46,46,46]; 
   deck8 = [46,45,47,48,48,48,48,48,48,48,48,48,48,48,48];    
   botton = [1,4,6,8,10,12,14,16,18,20,22,24,26,31,30];    
   front = [35,49,50,51,52,53,54,36,36,36,36,36,36,36,36]; 
   lateral1 = [51,50,56,41,40,43,57,57,57,57,57,57,57,57,57]; 
   lateral2 = [52,53,59,38,39,44,60,60,60,60,60,60,60,60,60]; 
   lateral3 = [43,46,48,57,57,57,57,57,57,57,57,57,57,57,57]; 
   lateral4 = [44,45,47,60,60,60,60,60,60,60,60,60,60,60,60]; 
   blocoright1 = [35,49,55,42,42,42,42,42,42,42,42,42,42,42,42]; 
   blocoright2 = [41,42,55,56,56,56,56,56,56,56,56,56,56,56,56]; 
   blocoleft1 = [36,37,58,54,54,54,54,54,54,54,54,54,54,54,54]; 
   blocoleft2 = [37,38,59,58,54,54,54,54,54,54,54,54,54,54,54];    
   stack1 = [64,61,66,68,68,68,68,68,68,68,68,68,68,68,68]; 
   stack2 = [61,62,65,66,66,66,66,66,66,66,66,66,66,66,66]; 
   stack3 = [62,65,67,63,63,63,63,63,63,63,63,63,63,63,63]; 
   stack4 = [67,68,64,63,63,63,63,63,63,63,63,63,63,63,63]; 
   stacktop = [66,65,67,68,68,68,68,68,68,68,68,68,68,68,68];    
   middleright1 = [72,69,73,75,75,75,75,75,75,75,75,75,75,75,75]; 
   middleright2 = [69,70,74,73,73,73,73,73,73,73,73,73,73,73,73]; 
   middleright3 = [70,74,76,71,71,71,71,71,71,71,71,71,71,71,71]; 
   middleright4 = [71,76,75,72,72,72,72,72,72,72,72,72,72,72,72]; 
   middlerighttop = [73,74,75,76,76,76,76,76,76,76,76,76,76,76,76];    
   middleleft1 = [80,77,81,84,84,84,84,84,84,84,84,84,84,84,84]; 
   middleleft2 = [77,78,82,81,81,81,81,81,81,81,81,81,81,81,81]; 
   middleleft3 = [78,79,83,82,82,82,82,82,82,82,82,82,82,82,82]; 
   middleleft4 = [79,80,84,83,83,83,83,83,83,83,83,83,83,83,83]; 
   middlelefttop = [81,82,83,84,84,84,84,84,84,84,84,84,84,84,84];    
   mastproa1 = [88,85,89,92,92,92,92,92,92,92,92,92,92,92,92]; 
   mastproa2 = [85,86,90,89,89,89,89,89,89,89,89,89,89,89,89]; 
   mastproa3 = [86,87,91,90,90,90,90,90,90,90,90,90,90,90,90]; 
   mastproa4 = [87,88,92,91,91,91,91,91,91,91,91,91,91,91,91]; 
   mastproatop = [89,90,91,92,92,92,92,92,92,92,92,92,92,92,92];    
   mastpopa1 = [96,93,97,100,100,100,100,100,100,100,100,100,100,100,100]; 
   mastpopa2 = [93,94,98,97,97,97,97,97,97,97,97,97,97,97,97]; 
   mastpopa3 = [94,98,99,95,95,95,95,95,95,95,95,95,95,95,95]; 
   mastpopa4 = [95,99,100,96,96,96,96,96,96,96,96,96,96,96,96]; 
   mastpopatop = [97,98,99,100,100,100,100,100,100,100,100,100,100,100,100];    
    
   %faces   
     
   faces=[proa1 
      proa2  
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      proa3  
      proa4  
      proa5  
      proa6  
      proa7  
      proa8  
      proa9  
      proa10 
      proa11 
      proa12       
      plane1  
      plane2  
      plane3        
      deck1  
      deck2  
      deck3  
      deck4  
      deck5  
      deck6  
      deck7  
      deck8        
      botton        
      front  
      lateral1  
      lateral2  
      lateral3  
      lateral4  
      blocoright1  
      blocoright2  
      blocoleft1  
      blocoleft2        
      stack1  
      stack2  
      stack3  
      stack4  
      stacktop        
      middleright1  
      middleright2  
      middleright3  
      middleright4  
      middlerighttop        
      middleleft1  
      middleleft2  
      middleleft3  
      middleleft4  
      middlelefttop        
      mastproa1  
      mastproa2  
      mastproa3  
      mastproa4  
      mastproatop        
      mastpopa1  
      mastpopa2  
      mastpopa3  
      mastpopa4  
      mastpopatop]; 
%============================================================================= 
% End of file merchant.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : findInputMomSet.m 
% Function : Finds the moment invariants input set for each view angle 
%          This set will be used as the input for the neural network classifier 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [trainingSet] = findInputMomSet( noise_silhouettes,rows,columns); 
 
totalLines=12;  %number of moment functions 
[X,totalColumns]=size(noise_silhouettes); 
trainingSet= zeros(totalLines,totalColumns); 
X1=zeros(rows,columns); 
 
for i=1:totalColumns 
    
      temp=noise_silhouettes(:,i); 
      X1(:)=temp; 
      trainingSet(1:6,i)=find_mom_functions(X1);   % solid silhouette       
      X2=X1*255;                                           %[ 0 0 ...] max=255 
      XX1=edge(X2,'prewitt');                              %only the edges [0 0 
0 ...] max=1 
      trainingSet(7:12,i)=find_mom_functions(XX1); %boundary 
end 
%============================================================================= 
% End of file findInputMomSet.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : find_mom_functions.m 
% Function : returns six functions values relating to the central moment 
functions 
%             invariant under rotation, translation,reflection and scale  
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function NewMoments = find_mom_functions(pattern); 
 
%FIND_MOM_FUNCTIONS returns six functions values relating to the central moment 
functions 
%invariant under rotation, translation,reflection and scale 
%   [NewM2,NewM3,NewM4,NewM5,NewM6,NewM7] = find_mom_functions(pattern) 
 
%find the second and third-order central moments 
m_1_1=find_moment(1,1,pattern); 
m_1_2=find_moment(1,2,pattern); 
m_2_1=find_moment(2,1,pattern); 
m_2_0=find_moment(2,0,pattern); 
m_0_2=find_moment(0,2,pattern); 
m_0_3=find_moment(0,3,pattern); 
m_3_0=find_moment(3,0,pattern); 
 
%find the moment functions invariant under rotation and reflection 
M2=(m_2_0 - m_0_2)^2 + 4*(m_1_1^2); 
M3=(m_3_0 - 3*m_1_2)^2 + (3*m_2_1 - m_0_3)^2; 
M4=(m_3_0 + m_1_2)^2 + (m_2_1 +m_0_3)^2; 
M5=(m_3_0 - 3*m_1_2)*(m_3_0 + m_1_2)*((m_3_0 + m_1_2)^2 - 3*(m_2_1 + 
m_0_3)^2)+(3*m_2_1 - m_0_3)*(m_2_1 + m_0_3)*(3*((m_3_0 + m_1_2)^2) - (m_2_1 + 
m_0_3)^2); 
M6=(m_2_0 - m_0_2)*((m_3_0 + m_1_2)^2 - (m_2_1 + m_0_3)^2) + 4*m_1_1*(m_3_0 + 
m_1_2)*(m_2_1 + m_0_3); 
M7=(3*m_2_1 - m_0_3)*(m_3_0 + m_1_2)*((m_3_0 + m_1_2)^2 - 3*(m_2_1 + m_0_3)^2) 
- (m_3_0 - 3*m_1_2)*(m_2_1 + m_0_3)*(3*(m_3_0 + m_1_2)^2 - (m_2_1 + m_0_3)^2); 
 
%normalizing the moment functions under scale using the radius of gyration 
r=sqrt(m_2_0 + m_0_2); 
 
%the new moment function M2 through M7 
NewM2 = M2/(r^4); 
NewM3 = M3/(r^6); 
NewM4 = M4/(r^7); 
NewM5 = M5/(r^12); 
NewM6 = M6/(r^8); 
NewM7 = M7/(r^12); 
 
NewMoments=[NewM2 
   NewM3 
   NewM4 
   NewM5 
   NewM6 
   NewM7]; 
%============================================================================= 
% End of file find_mom_functions.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : find_moment.m 
% Function : returns the central moment related to the indexes p and q  
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [m_p_q] = find_moment(p,q,pattern); 
 
%FIND_MOMENT returns the central moment related to the indexes p and q. 
%   [M_P_Q] = FIND_MOMENT(P,Q,PATTERN)  
 
[NRows,NColumns]=size(pattern); 
count=sum(sum(pattern,1),2); 
 
%find the centroid values for this pattern 
 
[um,vm]= find_centroid(pattern); 
 
%index rows==>vi index columns==>ui 
%  m_p_q=m_p_q+((ui-um)^p)*((vi-vm)^q) 
 
[ui,vi]=meshgrid(0:(NColumns-1),0:(NRows-1));%ui=[0 1 2 ...      vi=[0 0 0 ...  
                                             %    0 1 2 ...          1 1 1 ... 
                                             %    0 1 2 ...          2 2 2 ... 
 
m_p_q=((ui-um).^p).*((vi-vm).^q); 
pattern=double(pattern); 
m_p_q=m_p_q.*pattern; 
m_p_q=sum(sum(m_p_q,1),2); 
m_p_q=m_p_q/count; 
%============================================================================= 
% End of file finf_moment.m 
 

80 



 

%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Function 
% Name : find_centroid.m 
% Function : returns the centroid values for an image silhouette  
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [um,vm] = find_centroid(pattern); 
 
%FIND_CENTROID returns the centroid values for an image frame PATTERN. 
%   [VM,UM] = FIND_CENTROID(PATTERN)  
 
 
%considering the solid silhouette or its boundary as a binary matrix(ones and 
zeros) 
pattern=double(pattern); 
[NRows,NColumns]=size(pattern); 
 
%the mean values um and vm are the centroid of the given pattern 
 
%index rows==>vi index columns==>ui 
%  m_p_q=m_p_q+((ui-um)^p)*((vi-vm)^q) 
 
[ui,vi]=meshgrid(0:(NColumns-1),0:(NRows-1));%ui=[0 1 2 ...      vi=[0 0 0 ...  
                                             %    0 1 2 ...          1 1 1 ... 
                                             %    0 1 2 ...          2 2 2 ... 
 
ui=ui.*pattern; 
um=sum(sum(ui,1),2); 
vi=vi.*pattern; 
vm=sum(sum(vi,1),2); 
count=sum(sum(pattern,1),2); 
vm=vm/count; 
um=um/count; 
%============================================================================= 
% End of file find_centroid.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% Type : Main program 
% Name : mainShipRecon  
% Function : Create and trains a neural network responsible for recognizing 
ship types 
%             based on the moment invariants calculated for each viewangle 
silhouette 
%              
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
azAngleInc=15;     % ==>12 azimuth angles 
eleAngleInc=15;%0,15,30,45 ==>four elev angles   % 90;%one elevation angle ==> 
zero degree 
totalAzimuth=180/azAngleInc;% ==>12 
totalElevation=4;%=90/eleAngleInc; 
totalColumns=totalAzimuth*totalElevation;%each column means one view 
totalLines=12;  %number of moment functions 
 
inputSet= zeros(totalLines,totalColumns); 
rows=210; 
columns=280; 
silhouettes=zeros(rows*columns,totalColumns); 
 
%    ========================== 
%    DEFINING THE MODEL PROBLEM 
%    ========================== 
 
%    The script file FINDINPUTMOMSET defines a matrix inputSet 
%    which contains the moment functions(12 values) for all views defined by 
the 
%    "Azimuth Angle Increment" and "Elevation Angle Increment" of the ship 
model. 
 
%    Each target vector has 5 elements with 
%    all zeros, except for a single 1.  Aircraft Carrier has a 1 in the 
%    first element, Destroyer in the second, Frigate in the third  
%    , Point Sur in the fourth and Merchant in the fifth. 
 
 
%aircraft carrier 
[verts,faces]=aircarrier; 
[inputSet,silhouettes]= findInputSet( verts,faces,azAngleInc,eleAngleInc); 
[x,y]=size(inputSet); 
 
temp=zeros(5,y); 
temp(1,:)=1;%first line means aircraft carrier 
 
targets=temp; 
alphabet=inputSet; 
all_silhouettes=silhouettes; 
 
1 
%destroyer 
[verts,faces]=destroyer; 
[inputSet,silhouettes]= findInputSet( verts,faces,azAngleInc,eleAngleInc); 
[x,y]=size(inputSet); 
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temp=zeros(5,y); 
temp(2,:)=1;%second line means destroyer 
 
targets=[targets,temp]; 
alphabet=[alphabet,inputSet]; 
all_silhouettes=[all_silhouettes,silhouettes]; 
 
2 
%frigate 
[verts,faces]=frigate; 
[inputSet,silhouettes]= findInputSet( verts,faces,azAngleInc,eleAngleInc); 
[x,y]=size(inputSet); 
temp=zeros(5,y); 
temp(3,:)=1;%third line means frigate 
 
targets=[targets,temp]; 
alphabet=[alphabet,inputSet]; 
all_silhouettes=[all_silhouettes,silhouettes]; 
 
3 
%point sur 
[verts,faces]=pointsur; 
[inputSet,silhouettes]= findInputSet( verts,faces,azAngleInc,eleAngleInc); 
[x,y]=size(inputSet); 
temp=zeros(5,y); 
temp(4,:)=1;%fourth line means point sur 
 
targets=[targets,temp]; 
alphabet=[alphabet,inputSet]; 
all_silhouettes=[all_silhouettes,silhouettes]; 
 
4 
%merchant 
[verts,faces]=merchant; 
[inputSet,silhouettes]= findInputSet( verts,faces,azAngleInc,eleAngleInc); 
[x,y]=size(inputSet); 
temp=zeros(5,y); 
temp(5,:)=1;%fifth line means point sur 
 
targets=[targets,temp]; 
alphabet=[alphabet,inputSet]; 
all_silhouettes=[all_silhouettes,silhouettes]; 
 
save all_silhouettes all_silhouettes; 
clear all_silhouettes; 
save alphabet alphabet; 
save targets targets; 
 
clf; 
figure(gcf) 
echo on 
 
[R,Q] = size(alphabet); 
[S2,Q] = size(targets); 
 
%pause % Strike any key to define the network... 
 
%    ==================== 
%    DEFINING THE NETWORK 
%    ==================== 
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%    The ship recognition network will have 20 TANSIG 
%    neurons in its hidden layer. 
 
S1 = 20; 
net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx'); 
net.LW{2,1} = net.LW{2,1}*0.01; 
net.b{2} = net.b{2}*0.01; 
 
%pause % Strike any key to train the network... 
 
%    ==================== 
%    TRAINING THE NETWORK  
%    ==================== 
 
net.performFcn = 'sse';        % Sum-Squared Error performance function 
net.trainParam.goal = 0.1;     % Sum-squared error goal. 
net.trainParam.show = 10000;%20;      % Frequency of progress displays (in 
epochs). 
net.trainParam.epochs = 600000;  % Maximum number of epochs to train. 
net.trainParam.mc = 0.95;      % Momentum constant. 
 
%    Training begins...please wait... 
 
P = alphabet; 
T = targets; 
 
[net,tr] = train(net,P,T); 
save net net 
5 
%    ...and finally finishes. 
%============================================================================= 
% End of file mainShipRecon.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% Type : Procedure 
% Name : findInputSet  
% Function : Creates the 3-D model, change the viewpoint of the 3-D model, 
%             extract the silhouette for each training angle 
% Type : Function 
% Date 20/may/2000 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function [trainingSet,silhouettes] = findInputSet( 
verts,faces,azAngleInc,eleAngleInc); 
 
totalAzimuth=180/azAngleInc; 
totalElevation=4;%90/eleAngleInc; 
totalColumns=totalAzimuth*totalElevation;%each column means one view 
totalLines=12;  %number of moment functions 
trainingSet= zeros(totalLines,totalColumns); 
rows=210; 
columns=280; 
silhouettes=zeros(rows*columns,totalColumns); 
figNumber=figure( ... 
      'Name','Silhouette', ... 
      'Position',[120 120 280 210]);% matriz => 210rows X 280columns 
 
figure(figNumber) 
 
%Creates the 3-D model 
patch('Vertices',verts,'Faces',faces); 
view(3) 
axis equal; 
axis off 
axis vis3d 
lineCount=0; 
 
 
for i=-90:azAngleInc:89       %azimuth popa until proa 
   i 
   %for j=0:eleAngleInc:89     %elevation   
   for j=0:eleAngleInc:46     %elevation 
      j 
      lineCount=lineCount+1; 
       
      %Changes the model viewpoint to the desired training angle 
      view(i,j); 
      [X,map]=capture;        %[65, 65, ...] 
      X1=X-65;                %[0 0 ... ] max=1 
      silhouettes(:,lineCount)=X1(:); 
      trainingSet(1:6,lineCount)=find_mom_functions(X1);   % solid silhouette       
      X2=X1*255;                                           %[ 0 0 ...] max=255 
      XX1=edge(X2,'prewitt');                              %only the edges [0 0 
0 ...] max=1 
      trainingSet(7:12,lineCount)=find_mom_functions(XX1); %boundary 
   end 
end 
%============================================================================= 
% End of file findInputSet.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% Type : Function 
% Name : interface.m 
% Function : Create a Graphical User Interface in order to evaluate the  
%             Automatic Target Recognition System implemented 
%             3 ship silhouettes are shown in the interface:  
%                   - the original silhoette 
%                   - the rotated, scaled and noisy silhouette defined by the 
user 
%                   - the neural network "guessed" silhouette 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function interface(action) 
 
if nargin<1, 
    action='initialize'; 
end; 
 
if strcmp(action,'initialize'), 
    oldFigNumber=watchon; 
 
    figNumber=figure( ... 
        'Name','Neural Network Ship Silhouette Recognition', ... 
        'NumberTitle','off', ... 
      'Visible','off', ... 
      'BackingStore','off'); 
 
    axPos=[0.40 0.95-0.28 0.20 0.28]; 
    axHndl1=axes( ... 
        'Units','normalized', ... 
        'Position',axPos, ... 
       'XTick',[],'YTick',[], ... 
      'Box','on'); 
    labelPos=[0.05 0.80 0.30 0.05]; 
    uicontrol( ... 
        'Style','text', ... 
      'String','Original Ship Silhouette', ... 
      'BackgroundColor','k', ... 
      'ForegroundColor','w', ... 
        'Units','normalized', ... 
        'Position',labelPos); 
 
    axHndl2=axes( ... 
        'Units','normalized', ... 
        'Position',axPos+[0 -0.31 0 0], ... 
       'XTick',[],'YTick',[], ... 
      'Box','on'); 
    labelPos=[0.05 0.50 0.30 0.05]; 
    uicontrol( ... 
        'Style','text', ... 
      'String','Ship Silhouette with Noise', ... 
      'BackgroundColor','k', ... 
      'ForegroundColor','w', ... 
        'Units','normalized', ... 
        'Position',labelPos); 
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    axHndl3=axes( ... 
        'Units','normalized', ... 
        'Position',axPos+[0 -0.62 0 0], ... 
       'XTick',[],'YTick',[], ... 
      'Box','on'); 
    labelPos=[0.05 0.20 0.30 0.05]; 
    uicontrol( ... 
        'Style','text', ... 
      'String','Network''s Guess', ... 
      'BackgroundColor','k', ... 
      'ForegroundColor','w', ... 
        'Units','normalized', ... 
        'Position',labelPos); 
 
    %=================================== 
    % Information for all buttons 
    top=0.95; 
    bottom=0.05; 
    labelColor=[0.8 0.8 0.8]; 
    btnWid=0.20; 
    btnHt=0.10; 
    right=0.95; 
    left=right-btnWid; 
    % Spacing between the button and the next command's label 
    spacing=0.05; 
     
    %==================================== 
    % The CONSOLE frame 
    frmBorder=0.02; 
    frmPos=[left-frmBorder bottom-frmBorder btnWid+2*frmBorder 
0.9+2*frmBorder]; 
    h=uicontrol( ... 
        'Style','frame', ... 
        'Units','normalized', ... 
        'Position',frmPos, ... 
      'BackgroundColor',[0.5 0.5 0.5]); 
 
    %==================================== 
    % The NEW SILHOUETTE button 
    btnNumber=1; 
    yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing); 
    labelStr='New Silhouette'; 
    callbackStr='interface(''new'');'; 
 
    % Generic button information 
    btnPos=[left yPos btnWid btnHt]; 
    flyHndl=uicontrol( ... 
        'Style','pushbutton', ... 
        'Units','normalized', ... 
        'Position',btnPos, ... 
        'String',labelStr, ... 
        'Callback',callbackStr); 
 
    %==================================== 
    % The NOISE slider 
    btnNumber=2; 
    yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing); 
    labelStr='Noise'; 
 
    % Generic button information 
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    sldPos=[left yPos btnWid btnHt/2]; 
    labelPos=[left yPos+btnHt/2 btnWid btnHt/2]; 
    sldHndl=uicontrol( ... 
        'Style','slider', ... 
        'Units','normalized', ... 
        'Position',sldPos); 
 
    uicontrol( ... 
        'Style','text', ... 
        'Units','normalized', ... 
      'String','Noise', ... 
        'Position',labelPos); 
      
    %==================================== 
    % The ROTATION slider 
    btnNumber=3; 
    yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing); 
    labelStr='Rotation'; 
 
    % Generic button information 
    rotPos=[left yPos btnWid btnHt/2]; 
    labelPos=[left yPos+btnHt/2 btnWid btnHt/2]; 
    rotHndl=uicontrol( ... 
        'Style','slider', ... 
        'Units','normalized', ... 
        'Position',rotPos); 
 
    uicontrol( ... 
        'Style','text', ... 
        'Units','normalized', ... 
      'String','Rotation', ... 
        'Position',labelPos); 
 
    %==================================== 
    % The SCALE slider 
    btnNumber=4; 
    yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing); 
    labelStr='Scale'; 
 
    % Generic button information 
    sclPos=[left yPos btnWid btnHt/2]; 
    labelPos=[left yPos+btnHt/2 btnWid btnHt/2]; 
    sclHndl=uicontrol( ... 
        'Style','slider', ... 
        'Units','normalized', ... 
        'Position',sclPos); 
 
    uicontrol( ... 
        'Style','text', ... 
        'Units','normalized', ... 
      'String','Scale', ... 
        'Position',labelPos); 
 
     
    %==================================== 
    % The INFO button 
    labelStr='Info'; 
    callbackStr='interface(''info'')'; 
    infoHndl=uicontrol( ... 
        'Style','push', ... 
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        'Units','normalized', ... 
        'Position',[left bottom+btnHt+spacing btnWid btnHt], ... 
        'String',labelStr, ... 
        'Callback',callbackStr); 
 
    %==================================== 
    % The CLOSE button 
    labelStr='Close'; 
    callbackStr='close(gcf)'; 
    closeHndl=uicontrol( ... 
        'Style','push', ... 
        'Units','normalized', ... 
        'Position',[left bottom btnWid btnHt], ... 
        'String',labelStr, ... 
        'Callback',callbackStr); 
 
    % Uncover the figure 
    hndlList=[axHndl1 axHndl2 axHndl3 sldHndl rotHndl sclHndl]; 
    set(figNumber, ... 
 'Visible','on', ... 
 'UserData',hndlList); 
 
    watchoff(oldFigNumber); 
    choice=0; 
    interface new; 
    figure(figNumber); 
 
 
elseif strcmp(action,'new'), 
    figNumber=watchon; 
    hndlList=get(figNumber,'Userdata'); 
    axHndl1=hndlList(1); 
    axHndl2=hndlList(2); 
    axHndl3=hndlList(3); 
    sldHndl=hndlList(4); 
    rotHndl=hndlList(5); 
    sclHndl=hndlList(6); 
     
    load all_silhouettes; 
    load rows; 
    load columns; 
    load net; 
     
    [X,Y]=size(all_silhouettes); 
    load choice; 
    choice=choice+1;    
    save choice choice; 
    choice 
    %find a random silhouette as the original one 
    randsilhouette=all_silhouettes(:,choice); 
     
    %find the corresponding silhouette after rotation 
    rotsilhouette=randsilhouette; 
    rotationlevel=get(rotHndl,'Value'); 
    rotationlevel*180 
    X1=zeros(rows,columns); 
    X1(:)=randsilhouette; 
    X2=imrotate(X1,(rotationlevel*180),'bilinear','crop'); 
    rotsilhouette=X2(:); 
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    %find the corresponding silhouette after scaling 
    sclsilhouette=rotsilhouette; 
    scalelevel=get(sclHndl,'Value') 
    X1=zeros(rows,columns); 
    X1(:)=rotsilhouette; 
    X2=imrotate(X1,45,'bilinear','crop'); 
    sclsilhouette=X2(:); 
     
    %find the corresponding silhouette after adding noise 
    noiselevel=get(sldHndl,'Value') 
    noise=round(randn(rows*columns,1)*noiselevel);     
    y=noise>0; 
    w=noise<0; 
    noise=y+w; 
    noisesilhouette=rotsilhouette+noise;    
             
    testsilhouette=noisesilhouette;     
    testMoments= findInputMomSet( testsilhouette,rows,columns); 
    A = sim(net,testMoments); 
    output=compet(A); 
    result=find(output==1)-1; 
    result 
    outsilhouette=all_silhouettes(:,48*result+25); 
     
    axes(axHndl1);  
    plotSilhouette(randsilhouette,rows,columns); 
    axes(axHndl2);  
    plotSilhouette(testsilhouette,rows,columns); 
    axes(axHndl3);  
    plotSilhouette(outsilhouette,rows,columns); 
    watchoff(figNumber); 
 
elseif strcmp(action,'info'), 
    ttlStr=get(gcf,'Name'); 
    hlpStr=  {'                                                   '   
         ' This window demonstrates the use of a neural      '   
         ' network to recognize the ship silhouettes.        '   
         ' of the alphabet. The system used here is based    '   
         ' on a two layer network (not including the input   '   
         ' layer) with 20 neurons in the hidden layer and    '   
         ' 5 neurons (one for each ship type) in the output  '   
         ' layer. The moment invariants values are the input ' 
         ' of the neural network. They are 12 element vectors'   
         ' representing the invariants for the silhouette.   '   
         '                                                   '   
         ' The network has already been trained using        '   
         ' backpropagation - you can test it by pressing     '   
         ' the "New Letter" button. This passes a random     '   
         ' letter to the network. The "Noise" slider adds    '   
         ' random noise to make the classification problem   '   
         ' more difficult. The "Rotation" and the "Scale"    ' 
         ' buttons allow you to rotate and to change the     '  
         ' scale of the silhouette to be tested.             '   
         '                                                   '   
         ' File name: interface.m                               '}; 
      helpwin(hlpStr,ttlStr); 
 
end;     
%============================================================================= 
% End of file interface.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% Type : Function 
% Name : plotSilhouette.m 
% Function : Draws Ship Silhouette inside the Graphical User Interface 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function plotSilhouette(silhouette,rows,columns) 
 
X1=zeros(rows,columns); 
X1(:)=silhouette; 
imagesc(X1);%body silhouette 
colormap(gray(2)) 
set(gca,'XTick',[],'YTick',[]); 
%============================================================================= 
% End of file plotSilhouette.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% Type : Function 
% Name : segmentation.m 
% Function : Segments a FLIR real image using a histogram and threshold 
technique 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
%Aircraft Carrier 
[X,Map]=imread('carrier10.tif','tif');% 240 lines by 320 columns 
%[X,Map]=imread('carrier11.tif','tif');% 240 lines by 320 columns 
%[X,Map]=imread('carrier3.tif','tif');% 240 lines by 320 columns 
%[X,Map]=imread('carrier6.tif','tif');% 240 lines by 320 columns 
 
%Destroyer 
%[X,Map]=imread('ab6.tif','tif');% 240 lines by 320 columns 
%[X,Map]=imread('dd1.tif','tif');% 240 lines by 320 columns 
 
%Merchant 
%[X,Map]=imread('group3tanker.tif','tif');% 240 lines by 320 columns 
%[X,Map]=imread('group3tanker2.tif','tif');% 240 lines by 320 columns 
%[X,Map]=imread('flir2_2.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir2_3.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir2_4.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir2_5.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir2_6.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir7_1.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir7_11.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir7_12.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir8_1.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir8_12.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir8_15.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir8_2.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('flir7_5.jpg','jpg');% 240 lines by 320 columns 
 
%Research Ship 
%[X,Map]=imread('iranpb1.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('iranpb2.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('iranpb3.jpg','jpg');% 240 lines by 320 columns 
%[X,Map]=imread('pointsur.bmp','bmp');% 240 lines by 320 columns 
 
 
X1=X(:,:,1); 
figure 
colormap(gray(256)) 
imshow(X1) 
 
[counts,X]=imhist(X1); 
figure 
stem(X,counts) 
p=polyfit(X,counts,30); 
r=roots(p); 
maximo=max(counts); 
threshold=find(counts==maximo) 
rr=(r<threshold).*r; 
newThreshold=abs(max(real(rr)))+10 
[x,y]=size(X1); 
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XX1=double(X1); 
Y=(XX1<newThreshold).*(XX1>10); 
Y=double(Y); 
Y=Y*255; 
 
figure 
colormap(gray(256)) 
imshow(Y) 
 
resImg2 = bwmorph(Y,'spur'); 
figure 
imshow(resImg2); 
colormap(gray(256)); 
 
resImg3 = bwmorph(resImg2,'clean'); 
figure 
imshow(resImg3); 
colormap(gray(256)); 
 
resImg4 = bwmorph(resImg3,'fill'); 
figure 
imshow(resImg4); 
colormap(gray(256)); 
 
[resImg5,maps1]=bwlabel(resImg4,4); 
resImg6=zeros(size(Y)); 
maximo=0; 
for i=1:maps1 
   tempMap=(resImg5==i); 
   total=sum(sum(tempMap)); 
   if (total>maximo) 
      resImg6=tempMap; 
      maximo=total; 
   end 
end 
figure 
colormap(gray(256)) 
imshow(resImg6) 
 
resImg7 = bwfill(resImg6,'holes'); 
figure 
imshow(resImg7); 
colormap(gray(256)); 
 
%Original is 240x320 but I need to save 210x280 
X1=resImg7(16:(x-15),41:y); 
[x,y]=size(X1); 
 
ab1=zeros(x*y,1); 
ab1=resImg7(:); 
 
save ab1 ab1; 
%============================================================================= 
% End of file segmentation.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% 
% Type : Main program 
% Name : createTestSet.m  
% Function : Creates 05 mat files containing the silhouettes 
%             of each ship for increments of one degree in azimuth and 
elevation 
%             then plots the errors  
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
azAngleInc=1;%5; % ==> 36 azimuth angles  
eleAngleInc=15;% ==> 10 elevation angles  
totalAzimuth=180/azAngleInc;% ==>180  
totalElevation=2%4;%10;  
totalColumns=totalAzimuth*totalElevation;%each column means one view ==> 
36*10=360 silhouettes 
totalLines=12;  %number of moment functions 
 
rows=210; 
columns=280; 
 
resultSet=zeros(totalAzimuth,totalElevation); 
 
1 
%aircraft carrier 
[verts,faces]=aircarrier; 
rightResult=1; 
resultSet= findResultSet( verts,faces,azAngleInc,eleAngleInc,rightResult); 
 
aircarrierResultSet=resultSet; 
save aircarrierResultSet aircarrierResultSet; 
clear aircarrierResultSet; 
 
2 
%destroyer 
[verts,faces]=destroyer; 
rightResult=2; 
resultSet= findResultSet( verts,faces,azAngleInc,eleAngleInc,rightResult); 
 
destroyerResultSet=resultSet; 
save destroyerResultSet destroyerResultSet; 
clear destroyerResultSet; 
 
3 
%frigate 
[verts,faces]=frigate; 
rightResult=3; 
resultSet= findResultSet( verts,faces,azAngleInc,eleAngleInc,rightResult); 
 
frigateResultSet=resultSet; 
save frigateResultSet frigateResultSet; 
clear frigateResultSet; 
 
4 
%point sur 
[verts,faces]=pointsur; 
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rightResult=4; 
resultSet= findResultSet( verts,faces,azAngleInc,eleAngleInc,rightResult); 
 
pointsurResultSet=resultSet; 
save pointsurResultSet pointsurResultSet; 
clear pointsurResultSet; 
 
5 
%merchant 
[verts,faces]=merchant; 
rightResult=5; 
resultSet= findResultSet( verts,faces,azAngleInc,eleAngleInc,rightResult); 
 
merchantResultSet=resultSet; 
save merchantResultSet merchantResultSet; 
clear merchantResultSet; 
 
pause 
 
load aircarrierResultSet1 
temp=aircarrierResultSet; 
load aircarrierResultSet1 
temp=[temp,aircarrierResultSet]; 
aircarrierResultSet=temp; 
save aircarrierResultSet aircarrierResultSet; 
 
load destroyerResultSet1 
temp=destroyerResultSet; 
load destroyerResultSet1 
temp=[temp,destroyerResultSet]; 
destroyerResultSet=temp; 
save destroyerResultSet destroyerResultSet; 
 
load frigateResultSet1 
temp=frigateResultSet; 
load frigateResultSet1 
temp=[temp,frigateResultSet]; 
frigateResultSet=temp; 
save frigateResultSet frigateResultSet; 
 
load pointsurResultSet1 
temp=pointsurResultSet; 
load pointsurResultSet1 
temp=[temp,pointsurResultSet]; 
pointsurResultSet=temp; 
save pointsurResultSet pointsurResultSet; 
 
load merchantResultSet1 
temp=merchantResultSet; 
load merchantResultSet1 
temp=[temp,merchantResultSet]; 
merchantResultSet=temp; 
save merchantResultSet merchantResultSet; 
 
%aircraft carrier 
figure 
azimuthAngle=[-90:1:89]; 
errorAircarrier=sum(aircarrierResultSet'); 
errorPercent=(errorAircarrier/4)*100; 
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newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85]; 
newErrorPercent1=errorPercent(1:5:44); 
newErrorPercent2=errorPercent(45:15:136); 
newErrorPercent3=errorPercent(140:5:179); 
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3]; 
 
plot(newAzimuthAngle,newErrorPercent,'or') 
hold 
plot(azimuthAngle,errorPercent) 
xlabel('azimuth angle') 
ylabel('error(%)') 
title('Aircraft Carrier Testing Results (adding all 4 elevation angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 642 (89.2%)'); 
 
figure 
elevationAngle=[0:15:46]; 
errorAircarrier=sum(aircarrierResultSet); 
errorPercent=(errorAircarrier/180)*100; 
newElevationAngle=[0:15:46]; 
newErrorPercent=errorPercent(1:1:4); 
plot(newElevationAngle,newErrorPercent,'or') 
hold 
plot(elevationAngle,errorPercent) 
xlabel('elevation angle') 
ylabel('error(%)') 
title('Aircraft Carrier Testing Results (adding all 180 azimuth angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 642'); 
 
%Destroyer 
figure 
azimuthAngle=[-90:1:89]; 
errorDestroyer=sum(destroyerResultSet'); 
errorPercent=(errorDestroyer/4)*100; 
 
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85]; 
newErrorPercent1=errorPercent(1:5:44); 
newErrorPercent2=errorPercent(45:15:136); 
newErrorPercent3=errorPercent(140:5:179); 
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3]; 
 
plot(newAzimuthAngle,newErrorPercent,'or') 
hold 
plot(azimuthAngle,errorPercent) 
xlabel('azimuth angle') 
ylabel('error(%)') 
title('Destroyer Testing Results (adding all 4 elevation angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 698 (96.9%)'); 
 
figure 
elevationAngle=[0:15:46]; 
errorDestroyer=sum(destroyerResultSet); 
errorPercent=(errorDestroyer/180)*100; 
newElevationAngle=[0:15:46]; 
newErrorPercent=errorPercent(1:1:4); 
plot(newElevationAngle,newErrorPercent,'or') 
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hold 
plot(elevationAngle,errorPercent) 
xlabel('elevation angle') 
ylabel('error(%)') 
title('Destroyer Testing Results (adding all 180 azimuth angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 698'); 
 
 
%Frigate 
figure 
azimuthAngle=[-90:1:89]; 
errorFrigate=sum(frigateResultSet'); 
errorPercent=(errorFrigate/4)*100; 
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85]; 
newErrorPercent1=errorPercent(1:5:44); 
newErrorPercent2=errorPercent(45:15:136); 
newErrorPercent3=errorPercent(140:5:179); 
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3]; 
plot(newAzimuthAngle,newErrorPercent,'or') 
hold 
plot(azimuthAngle,errorPercent) 
xlabel('azimuth angle') 
ylabel('error(%)') 
title('Frigate Testing Results (adding all 4 elevation angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 666 (92,5%)'); 
 
figure 
elevationAngle=[0:15:46]; 
errorFrigate=sum(frigateResultSet); 
errorPercent=(errorFrigate/180)*100; 
newElevationAngle=[0:15:46]; 
newErrorPercent=errorPercent(1:1:4); 
plot(newElevationAngle,newErrorPercent,'or') 
hold 
plot(elevationAngle,errorPercent) 
xlabel('elevation angle') 
ylabel('error(%)') 
title('Frigate Testing Results (adding all 180 azimuth angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 666'); 
 
 
 
%Pointsur 
figure 
azimuthAngle=[-90:1:89]; 
errorPointsur=sum(pointsurResultSet'); 
errorPercent=(errorPointsur/4)*100; 
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85]; 
newErrorPercent1=errorPercent(1:5:44); 
newErrorPercent2=errorPercent(45:15:136); 
newErrorPercent3=errorPercent(140:5:179); 
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3]; 
plot(newAzimuthAngle,newErrorPercent,'or') 
hold 
plot(azimuthAngle,errorPercent) 
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xlabel('azimuth angle') 
ylabel('error(%)') 
title('Pointsur Testing Results (adding all 4 elevation angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 644 (89.4%)'); 
 
figure 
elevationAngle=[0:15:46]; 
errorPointsur=sum(pointsurResultSet); 
errorPercent=(errorPointsur/180)*100; 
newElevationAngle=[0:15:46]; 
newErrorPercent=errorPercent(1:1:4); 
plot(newElevationAngle,newErrorPercent,'or') 
hold 
plot(elevationAngle,errorPercent) 
xlabel('elevation angle') 
ylabel('error(%)') 
title('Pointsur Testing Results (adding all 180 azimuth angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 644'); 
 
%Merchant 
figure 
azimuthAngle=[-90:1:89]; 
errorMerchant=sum(merchantResultSet'); 
errorPercent=(errorMerchant/4)*100; 
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85]; 
newErrorPercent1=errorPercent(1:5:44); 
newErrorPercent2=errorPercent(45:15:136); 
newErrorPercent3=errorPercent(140:5:179); 
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3]; 
plot(newAzimuthAngle,newErrorPercent,'or') 
hold 
plot(azimuthAngle,errorPercent) 
xlabel('azimuth angle') 
ylabel('error(%)') 
title('Merchant Testing Results (adding all 4 elevation angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 634 (88.1%)'); 
 
figure 
elevationAngle=[0:15:46]; 
errorMerchant=sum(merchantResultSet); 
errorPercent=(errorMerchant/180)*100; 
newElevationAngle=[0:15:46]; 
newErrorPercent=errorPercent(1:1:4); 
plot(newElevationAngle,newErrorPercent,'or') 
hold 
plot(elevationAngle,errorPercent) 
xlabel('elevation angle') 
ylabel('error(%)') 
title('Merchant Testing Results (adding all 180 azimuth angles)') 
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct 
classified ==> 634'); 
%============================================================================= 
% End of file createTestSet.m 
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%============================================================================= 
%   Naval Postgraduate School - CA 
% Type : Procedure 
% Name : findResultSet.m  
% Function : returns a vector with the size of all the viewangles being 
tested 
%             where "1" will mean misclassified and "0" will mean correct 
classified 
% Date 01 march 2001 
% Version : 1.0 
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy) 
%============================================================================= 
 
function resultSet = findResultSet( 
verts,faces,azAngleInc,eleAngleInc,rightResult); 
 
totalAzimuth=180/azAngleInc; 
totalElevation=2;%4;%10;%90/eleAngleInc; 
totalColumns=totalAzimuth*totalElevation;%each column means one view 
totalLines=12;  %number of moment functions 
 
resultSet= zeros(totalAzimuth,totalElevation); 
 
trainingSet= zeros(totalLines,1); 
 
rows=210; 
columns=280; 
silhouettes=zeros(rows*columns,totalColumns); 
 
 
figNumber=figure( ... 
      'Name','Silhouette', ... 
      'Position',[120 120 280 210]);% matriz => 210rows X 280columns 
 
figure(figNumber) 
patch('Vertices',verts,'Faces',faces); 
view(3) 
axis equal; 
axis off 
axis vis3d 
lineCount=1; 
 
load net; 
 
azimuthCount=0; 
for i=-90:azAngleInc:89       %azimuth popa until proa 
   i 
   azimuthCount=azimuthCount+1; 
   elevationCount=0; 
   %for j=0:eleAngleInc:16%46     %elevation 
   for j=30:eleAngleInc:46     %elevation    
      j 
      elevationCount=elevationCount+1; 
      view(i,j); 
      [X,map]=capture;        %[65, 65, ... 
      X1=X-65;                %[0 0 ... ] max=1 
       
      trainingSet(1:6,lineCount)=find_mom_functions(X1);   % solid silhouette       
      X2=X1*255;                                           %[ 0 0 ...] max=255 
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      XX1=edge(X2,'prewitt');                              %only the edges [0 0 
0 ...] max=1 
      trainingSet(7:12,lineCount)=find_mom_functions(XX1); %boundary 
       
      A = sim(net,trainingSet); 
      output=compet(A); 
      result=find(output==1);%-1; 
      result 
      if result==rightResult 
         resultSet(azimuthCount,elevationCount)=0; 
      else 
         resultSet(azimuthCount,elevationCount)=1; 
      end       
   end 
end 
%============================================================================= 
% End of file findResultSet.m 
 
 

100 



 

LIST OF REFERENCES 

 

1. Richard, C., Hemani, H.,  “Identification of three-dimensional objects using Fourier 
descriptors of the boundary curve”, IEEE-T Systems Man. Cybernet., SMC-4, Vol. 4, 
pp. 371-378, 1974. 

2. Bebis, G. N., Papadourakis, G. M., “Object Recognition using invariant object 
boundary representations and neural network models”, Pattern Recognition 25, Vol. 
1, pp. 25-44, 1992. 

3. Ettinger, G., “Hierarchical object recognition using libraries of parameterized model 
sub-parts”,  Master’s Thesis, MIT, 1987. 

4. Dubois, S., Glanz, F., “An autoregressive model approach to two-dimensional shape 
classification”, IEEE-T on PAMI, Vol. 8, pp. 55-66, 1986. 

5. Zahn, C. T., Roskies, R. Z., “Fourier descriptors for plane closed curves”, IEEE-T 
Comput.21, Vol. 3, pp. 269-281, 1972. 

6. Gorman, J., Mitchell, R., Kuhl, F., “Partial shape recognition using dynamic 
programming”, IEEE-T on PAMI 10, Vol. 2, pp. 257-266, 1988. 

7. Sadjadi, F., “Automatic object recognition: critical issues and current approaches”, 
Proc. SPIE 1471, pp. 303-313, 1991. 

8. Jaggi, S., Karl, C., Mallat, S., Willsky, A., “Silhouette recognition using high-
resolution pursuit”, Pattern Recognition 32, pp. 753-771, 1999. 

9. Hu, M. K., “Visual pattern recognition by moment invariants”, IRE Trans. On 
Information Theory, Vol. 8, pp. 179-187, 1962. 

10. Casasend, D., Pauly, J., Fetterly, D., “IR ships classification using a new moment 
pattern recognition concept”, Infrared Technology for Target Detection and 
Classification, SPIE Vol. 302, pp. 126-133, 1981. 

11. Rogers, S. K., Ruck, D. W., Kabrisky, M., Tarr, G. L., “Artificial neural networks for 
automatic target recognition”, Applications of Artificial Neural Networks, SPIE Vol. 
1294, pp. 1-12, 1990. 

12. Teh, C., Chin, R., “On image analysis by the method of moments”, IEEE-T on PAMI, 
Vol. 10, pp. 291-310, 1988. 

13. Kashyap, R., Chellapa, R., “Stochastic models for closed boundary analysis: 
representation and reconstruction”, IEEE-T Inf. Theory, Vol. 27, pp. 109-119, 1981. 

101 



 

14. Freeman, H., “Shape description via the use of critical points”, Pattern Recognition, 
Vol. 10, pp. 159-166, 1978. 

15. Jaggi, S., “Multiscale geometric feature extraction and object recognition”, 
Ph.D.Thesis, Massachusetts Institute of Technology, 1997. 

16. Dudani, S. A., Breeding, K. J., McGhee, R.B., “Aircraft identification by moment 
invariants”, IEEE-T on Computers, Vol. 26, No.1, pp. 39-46, Jan. 1977. 

17. Wallace, T. P., Wintz, P., “An efficient, three-dimensional aircraft recognition 
algorithm using normalized Fourier descriptors”, Comput.Graphics Image Proc., Vol. 
3, pp. 99-126, 1980. 

18. Reeves, A. P., Prokop, R. J., Andrews, S. E., Kuhl, F. P., “Three-dimensional shape 
analysis using moments and Fourier descriptors”, IEEE-T on PAMI, Vol. 10, No. 6, 
pp. 937-943, 1988. 

19. Khotanzad, A., Lu, J., “Classification of invariant image representations using a 
neural network”, IEEE-T on Acoustics, Speech, and Signal Processing, Vol. 38, No. 
6, pp. 1028-1038, 1990. 

20. Reddi, S. S., “Radial and angular moment invariants for image identification”, IEEE-
T on PAMI, Vol. 3, pp. 240-242, 1981. 

21. Lippman, R., “An introduction to computing with neural nets”, IEEE ASSP Mag., pp. 
109-119, April 1987. 

22. Carpenter, G., “Neural network models for pattern recognition and associative 
memory”, Neural Networks, Vol. 2, pp. 243-257, 1989. 

23. Fahlman, S., Hilton, G., “Connectionist architectures for artificial intelligence”, IEEE 
Comput., pp. 100-109, 1987. 

24. Sejnowski, T., Rosenberg, C., NETtalk: a parallel network that learns to read aloud, 
J.A.Anderson and E.Rosenfeld Neurocomputing Foundations, MIT Press, Cambridge, 
MA, 1988. 

25. Perantonis, S. J., Lisboa, J. G., “Translation, rotation, and scale invariant pattern 
recognition by high-order neural network and moment classifiers”, IEEE-T on Neural 
Networks, Vol. 3, No. 2, pp. 241-251, March 1992. 

26. Papadourakis, G. M., Bebis, G., Georgiopoulos, M., “Machine printed character 
recognition using neural networks”, Int. Neural Network Conf., Paris, 1990. 

27. Touretzky, D., Pomerleau, D., “What’s hidden in the hidden layers?”, Byte Mag., pp. 
227-233, 1989. 

102 



 

28. Rumelhart, D. E., McClelland, J. L. and the PDP, Explorations in the Microstructure 
of cognition, Vol. 1: Foundations, MIT Press, Cambridge, MA, 1986. 

29. Bebis, G., Papadourakis, G. M., Georgiopoulos, M., “Backpropagation: increasing 
rate of convergence by predictable pattern loading”, Intell. Syst, Rev. 1, pp. 14-30, 
1989. 

30. Jane’s Information Group Ltd, Jane’s Fighting Ships, 1999. 

31. Jane’s Information Group Ltd, Jane’s Merchant Ships, 1999. 

103 



 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

104 



 

BIBLIOGRAPHY 
 

Anderson, James A., An Introduction to Neural Networks, Third Printing, A Bradford 
Book, MIT Press, 1997. 

Russ, John C., The Image Processing Handbook, Third Edition, CRC Press with IEEE 
Press, 1998. 

The MathWorks Inc., Learning MATLAB V.5.3, 1999. 

Looney, Carl G., Pattern Recognition Using Neural Networks Theory and Algorithms for 
Engineers and Scientists, Oxford University Press, 1997. 

105 



 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

106 



 

INITIAL DISTRIBUTION LIST 
 

1. Defense Technical Information Center................................................................... 2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, Virginia 22060-6218 

2. Dudley Knox Library.............................................................................................. 2 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, California 93943-5101 

3. National Reconnaissance Office ............................................................................. 1 
14675 Lee Road 
Chantilly, Virginia 20151-1715 

4. Professor Neil C. Rowe, Code CS/Nr..................................................................... 2 
Department of Computer Science 
Naval Postgraduate School 
Monterey, California 93943-5000 

5. Prof. Robert B. McGhee, Code CS/Mz................................................................... 1 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 93943-5121 

6. Director, Instituto de Pesquisas da Marinha ........................................................... 1 
Rua Ipiru 2, Ilha do Governador  
21931-090 Rio de Janeiro - RJ 
BRAZIL 

7. Head of Research, Instituto de Pesquisas da Marinha ............................................ 1 
Rua Ipiru 2, Ilha do Governador  
21931-090 Rio de Janeiro - RJ 
BRAZIL 

8. Diretoria de Ensino da Marinha ............................................................................. 1 
via: Brazilian Naval Commission 
5130 MacArthur Boulevard, NW 
Washington, D.C. 20016-3344 

9. Diretoria de Telecomunicações da Marinha .......................................................... 1 
via: Brazilian Naval Commission 
5130 MacArthur Boulevard, NW 
Washington, D.C. 20016-3344 

107 



 

10. Director, Diretoria de Engenharia Naval ................................................................ 1 
Rua Primeiro de Março, 118 - 10º andar - Centro 
20.010-000 Rio de Janeiro - RJ 
BRAZIL 

11. Diretoria de Engenharia Naval, Library.................................................................. 1 
Rua Primeiro de Março, 118 - 10º andar – Centro 
20.010-000 Rio de Janeiro - RJ 
BRAZIL 

12. Diretoria de Sistemas de Armas da Marinha, Library ............................................ 1 
Rua Primeiro de Março, 118 - 19º andar - Centro  
20.010-000 Rio de Janeiro - RJ 
BRAZIL 

13. Instituto Militar de Engenharia, Library ................................................................. 1 
Praça General Tibúrcio 80, Praia Vermelha 
22290-270 Rio de Janeiro - RJ 
BRAZIL 

14. Centro Técnico Aeroespacial, Library.................................................................... 1 
Praça Mal. Eduardo Gomes 50, Vila das Acácias 
12228-904 São José dos Campos - SP 
BRAZIL 

15. CC(EN) Jorge Amaral Alves .................................................................................. 3 
Rua Acacio Santos 110, Osvaldo Cruz 
21550-250 Rio de Janeiro - RJ 
BRAZIL 

108 


	I. INTRODUCTION
	A. AUTOMATIC TARGET RECOGNITION
	B. APPLICATIONS OF AUTOMATIC OBJECT RECOGNITION  
	C. PROJECT GOALS

	II. FEATURE SELECTION AND MOMENT INVARIANTS
	A. OVERVIEW
	B. MOMENT INVARIANTS
	C. FEATURE VECTOR

	III. THE ARTIFICIAL NEURAL NETWORK (ANN) CLASSIFIER
	A. MOTIVATION
	B. MULTILAYER ANN AND THE BACKPROPAGATION RULE

	IV. EXPERIMENT DESCRIPTION
	A. PROGRAMMING ENVIRONMENT
	B. THE THREE-DIMENSIONAL SHIP MODEL DATABASE 
	1. The Three-Dimensional Ship Modeling 
	2. Viewpoint Control 
	3. Orthographic Projection 

	C. THE REAL FLIR IMAGES DATABASE
	1. Domain Issues
	2. Segmentation

	D. TRAINING PHASE OF THE NEURAL NETWORK CLASSIFIER
	E. TESTING PHASE
	F. PROGRAMS DEVELOPED

	V. RESULTS FROM EXPERIMENTATION
	A. EVALUATION STRUCTURE
	B. FIRST EXPERIMENT
	C. SECOND EXPERIMENT
	D. THIRD EXPERIMENT 
	E. FOURTH EXPERIMENT
	F. FIFTH EXPERIMENT

	VI. CONCLUSIONS

